Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
9.5 KiB
242 lines
9.5 KiB
import os
|
|
import sample_path as sp
|
|
import networkx as nx
|
|
import numpy as np
|
|
|
|
|
|
|
|
class NetworkGraph():
|
|
"""
|
|
Rappresenta il grafo che contiene i nodi e gli archi presenti nell'oggetto Structure graph_struct.
|
|
Ogni nodo contine la label node_id, al nodo è anche associato un id numerico progressivo indx che rappresenta la posizione
|
|
dei sui valori nella colonna indx della traj
|
|
|
|
:graph_struct: l'oggetto Structure da cui estrarre i dati per costruire il grafo graph
|
|
:graph: il grafo
|
|
|
|
"""
|
|
|
|
def __init__(self, graph_struct):
|
|
self.graph_struct = graph_struct
|
|
self.graph = nx.DiGraph()
|
|
self._nodes_indexes = self.graph_struct.list_of_nodes_indexes()
|
|
self._nodes_labels = self.graph_struct.list_of_nodes_labels()
|
|
self.aggregated_info_about_nodes_parents = None
|
|
self._fancy_indexing = None
|
|
self._time_scalar_indexing_structure = []
|
|
self._transition_scalar_indexing_structure = []
|
|
self._time_filtering = []
|
|
self._transition_filtering = []
|
|
|
|
def init_graph(self):
|
|
self.add_nodes(self.graph_struct.list_of_nodes_labels())
|
|
self.add_edges(self.graph_struct.list_of_edges())
|
|
self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes()
|
|
self._fancy_indexing = self.build_fancy_indexing_structure(0)
|
|
self.build_time_scalar_indexing_structure()
|
|
self.build_time_columns_filtering_structure()
|
|
self.build_transition_scalar_indexing_structure()
|
|
self.build_transition_columns_filtering_structure()
|
|
|
|
def add_nodes(self, list_of_nodes):
|
|
for id in list_of_nodes:
|
|
self.graph.add_node(id)
|
|
nx.set_node_attributes(self.graph, {id:self.graph_struct.get_node_indx(id)}, 'indx')
|
|
|
|
def add_edges(self, list_of_edges):
|
|
self.graph.add_edges_from(list_of_edges)
|
|
|
|
def get_ordered_by_indx_set_of_parents(self, node):
|
|
#print(node)
|
|
ordered_set = {}
|
|
parents = self.get_parents_by_id(node)
|
|
#print(parents)
|
|
sorted_parents = [x for _, x in sorted(zip(self.graph_struct.list_of_nodes_labels(), parents))]
|
|
#print(sorted_parents)
|
|
#print(parents)
|
|
p_indxes= []
|
|
p_values = []
|
|
for n in parents:
|
|
#indx = self.graph_struct.get_node_indx(n)
|
|
|
|
#print(indx)
|
|
#ordered_set[n] = indx
|
|
p_indxes.append(self.graph_struct.get_node_indx(n))
|
|
p_values.append(self.graph_struct.get_states_number(n))
|
|
ordered_set = (sorted_parents, p_indxes, p_values)
|
|
#print(ordered_set)
|
|
|
|
#ordered_set = {k: v for k, v in sorted(ordered_set.items(), key=lambda item: item[1])}
|
|
return ordered_set
|
|
|
|
def get_ord_set_of_par_of_all_nodes(self):
|
|
result = []
|
|
for node in self._nodes_labels:
|
|
result.append(self.get_ordered_by_indx_set_of_parents(node))
|
|
#print(result)
|
|
return result
|
|
|
|
"""def get_ordered_by_indx_parents_values(self, node):
|
|
parents_values = []
|
|
parents = self.get_ordered_by_indx_set_of_parents(node)
|
|
for n in parents:
|
|
parents_values.append(self.graph_struct.get_states_number(n))
|
|
return parents_values"""
|
|
|
|
def get_ordered_by_indx_parents_values_for_all_nodes(self):
|
|
"""result = []
|
|
for node in self._nodes_labels:
|
|
result.append(self.get_ordered_by_indx_parents_values(node))
|
|
return result"""
|
|
pars_values = [i[2] for i in self.aggregated_info_about_nodes_parents]
|
|
return pars_values
|
|
|
|
def get_states_number_of_all_nodes_sorted(self):
|
|
states_number_list = []
|
|
for node in self._nodes_labels:
|
|
states_number_list.append(self.get_states_number(node))
|
|
return states_number_list
|
|
|
|
def build_fancy_indexing_structure(self, start_indx):
|
|
"""list_of_parents_list = self.get_ord_set_of_par_of_all_nodes()
|
|
#print(list_of_parents_list)
|
|
index_structure = []
|
|
for i, list_of_parents in enumerate(list_of_parents_list):
|
|
indexes_for_a_node = []
|
|
for j, node in enumerate(list_of_parents):
|
|
indexes_for_a_node.append(self.get_node_indx(node) + start_indx)
|
|
index_structure.append(np.array(indexes_for_a_node, dtype=np.int))
|
|
#print(index_structure)
|
|
return index_structure"""
|
|
if start_indx > 0:
|
|
pass
|
|
else:
|
|
fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents]
|
|
return fancy_indx
|
|
|
|
|
|
def build_time_scalar_indexing_structure_for_a_node(self, node_indx, parents_indxs):
|
|
#print(node_indx)
|
|
#print("Parents_id", parents_indxs)
|
|
#T_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)])
|
|
T_vector = np.array([self.get_states_number_by_indx(node_indx)])
|
|
#print(T_vector)
|
|
#print("Here ", self.graph_struct.variables_frame.iloc[parents_id[0], 1])
|
|
T_vector = np.append(T_vector, [self.graph_struct.get_states_number_by_indx(x) for x in parents_indxs])
|
|
#print(T_vector)
|
|
T_vector = T_vector.cumprod().astype(np.int)
|
|
return T_vector
|
|
#print(T_vector)
|
|
|
|
def build_time_scalar_indexing_structure(self):
|
|
parents_indexes_list = self._fancy_indexing
|
|
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), parents_indexes_list):
|
|
#if not p_indxs:
|
|
#self._time_scalar_indexing_structure.append(np.array([self.get_states_number_by_indx(node_indx)],
|
|
#dtype=np.int))
|
|
#else:
|
|
self._time_scalar_indexing_structure.append(
|
|
self.build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs))
|
|
|
|
def build_transition_scalar_indexing_structure_for_a_node(self, node_indx, parents_indxs):
|
|
#M_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1],
|
|
#self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)])
|
|
M_vector = np.array([self.get_states_number_by_indx(node_indx),
|
|
self.get_states_number_by_indx(node_indx)])
|
|
M_vector = np.append(M_vector, [self.graph_struct.get_states_number_by_indx(x) for x in parents_indxs])
|
|
M_vector = M_vector.cumprod().astype(np.int)
|
|
return M_vector
|
|
|
|
def build_transition_scalar_indexing_structure(self):
|
|
parents_indexes_list = self._fancy_indexing
|
|
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), parents_indexes_list):
|
|
self._transition_scalar_indexing_structure.append(
|
|
self.build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs))
|
|
|
|
def build_time_columns_filtering_structure(self):
|
|
parents_indexes_list = self._fancy_indexing
|
|
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), parents_indexes_list):
|
|
#if p_indxs.size == 0:
|
|
#self._time_filtering.append(np.append(p_indxs, np.array([node_indx], dtype=np.int)))
|
|
#else:
|
|
self._time_filtering.append(np.append(np.array([node_indx], dtype=np.int), p_indxs))
|
|
|
|
def build_transition_columns_filtering_structure(self):
|
|
parents_indexes_list = self._fancy_indexing
|
|
nodes_number = self.graph_struct.total_variables_number
|
|
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), parents_indexes_list):
|
|
self._transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int))
|
|
|
|
def get_nodes(self):
|
|
return list(self.graph.nodes)
|
|
|
|
def get_edges(self):
|
|
return list(self.graph.edges)
|
|
|
|
def get_nodes_sorted_by_indx(self):
|
|
return self.graph_struct.list_of_nodes_labels()
|
|
|
|
def get_parents_by_id(self, node_id):
|
|
return list(self.graph.predecessors(node_id))
|
|
|
|
def get_states_number(self, node_id):
|
|
return self.graph_struct.get_states_number(node_id)
|
|
|
|
def get_states_number_by_indx(self, node_indx):
|
|
return self.graph_struct.get_states_number_by_indx(node_indx)
|
|
|
|
def get_node_by_index(self, node_indx):
|
|
return self.graph_struct.get_node_id(node_indx)
|
|
|
|
def get_node_indx(self, node_id):
|
|
return nx.get_node_attributes(self.graph, 'indx')[node_id]
|
|
|
|
@property
|
|
def time_scalar_indexing_strucure(self):
|
|
return self._time_scalar_indexing_structure
|
|
|
|
@property
|
|
def time_filtering(self):
|
|
return self._time_filtering
|
|
|
|
@property
|
|
def transition_scalar_indexing_structure(self):
|
|
return self._transition_scalar_indexing_structure
|
|
|
|
@property
|
|
def transition_filtering(self):
|
|
return self._transition_filtering
|
|
|
|
|
|
|
|
|
|
|
|
######Veloci Tests#######
|
|
"""os.getcwd()
|
|
os.chdir('..')
|
|
path = os.getcwd() + '/data'
|
|
s1 = sp.SamplePath(path)
|
|
s1.build_trajectories()
|
|
s1.build_structure()
|
|
|
|
g1 = NetworkGraph(s1.structure)
|
|
g1.init_graph()
|
|
print(g1.transition_scalar_indexing_structure)
|
|
print(g1.transition_filtering)
|
|
print(g1.time_scalar_indexing_strucure)
|
|
print(g1.time_filering)
|
|
|
|
|
|
#print(g1.build_fancy_indexing_structure(0))
|
|
#print(g1.get_states_number_of_all_nodes_sorted())
|
|
g1.build_scalar_indexing_structure()
|
|
print(g1.scalar_indexing_structure)
|
|
print(g1.build_columns_filtering_structure())
|
|
g1.build_transition_scalar_indexing_structure()
|
|
print(g1.transition_scalar_indexing_structure)
|
|
g1.build_transition_columns_filtering_structure()
|
|
print(g1.transition_filtering)
|
|
|
|
[array([3, 9]), array([ 3, 9, 27]), array([ 3, 9, 27, 81])]
|
|
[array([3, 0]), array([4, 1, 2]), array([5, 2, 0, 1])]"""
|
|
|
|
|