Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
487 lines
16 KiB
487 lines
16 KiB
from scipy import stats
|
|
import numpy as np
|
|
from numpy.testing import (assert_almost_equal, assert_,
|
|
assert_array_almost_equal, assert_array_almost_equal_nulp, assert_allclose)
|
|
import pytest
|
|
from pytest import raises as assert_raises
|
|
|
|
|
|
def test_kde_1d():
|
|
#some basic tests comparing to normal distribution
|
|
np.random.seed(8765678)
|
|
n_basesample = 500
|
|
xn = np.random.randn(n_basesample)
|
|
xnmean = xn.mean()
|
|
xnstd = xn.std(ddof=1)
|
|
|
|
# get kde for original sample
|
|
gkde = stats.gaussian_kde(xn)
|
|
|
|
# evaluate the density function for the kde for some points
|
|
xs = np.linspace(-7,7,501)
|
|
kdepdf = gkde.evaluate(xs)
|
|
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
|
|
intervall = xs[1] - xs[0]
|
|
|
|
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
|
|
prob1 = gkde.integrate_box_1d(xnmean, np.inf)
|
|
prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
|
|
assert_almost_equal(prob1, 0.5, decimal=1)
|
|
assert_almost_equal(prob2, 0.5, decimal=1)
|
|
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
|
|
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)
|
|
|
|
assert_almost_equal(gkde.integrate_kde(gkde),
|
|
(kdepdf**2).sum()*intervall, decimal=2)
|
|
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
|
|
(kdepdf*normpdf).sum()*intervall, decimal=2)
|
|
|
|
|
|
def test_kde_1d_weighted():
|
|
#some basic tests comparing to normal distribution
|
|
np.random.seed(8765678)
|
|
n_basesample = 500
|
|
xn = np.random.randn(n_basesample)
|
|
wn = np.random.rand(n_basesample)
|
|
xnmean = np.average(xn, weights=wn)
|
|
xnstd = np.sqrt(np.average((xn-xnmean)**2, weights=wn))
|
|
|
|
# get kde for original sample
|
|
gkde = stats.gaussian_kde(xn, weights=wn)
|
|
|
|
# evaluate the density function for the kde for some points
|
|
xs = np.linspace(-7,7,501)
|
|
kdepdf = gkde.evaluate(xs)
|
|
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
|
|
intervall = xs[1] - xs[0]
|
|
|
|
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
|
|
prob1 = gkde.integrate_box_1d(xnmean, np.inf)
|
|
prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
|
|
assert_almost_equal(prob1, 0.5, decimal=1)
|
|
assert_almost_equal(prob2, 0.5, decimal=1)
|
|
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
|
|
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)
|
|
|
|
assert_almost_equal(gkde.integrate_kde(gkde),
|
|
(kdepdf**2).sum()*intervall, decimal=2)
|
|
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
|
|
(kdepdf*normpdf).sum()*intervall, decimal=2)
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_kde_2d():
|
|
#some basic tests comparing to normal distribution
|
|
np.random.seed(8765678)
|
|
n_basesample = 500
|
|
|
|
mean = np.array([1.0, 3.0])
|
|
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
|
|
|
|
# Need transpose (shape (2, 500)) for kde
|
|
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
|
|
|
|
# get kde for original sample
|
|
gkde = stats.gaussian_kde(xn)
|
|
|
|
# evaluate the density function for the kde for some points
|
|
x, y = np.mgrid[-7:7:500j, -7:7:500j]
|
|
grid_coords = np.vstack([x.ravel(), y.ravel()])
|
|
kdepdf = gkde.evaluate(grid_coords)
|
|
kdepdf = kdepdf.reshape(500, 500)
|
|
|
|
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]), mean=mean, cov=covariance)
|
|
intervall = y.ravel()[1] - y.ravel()[0]
|
|
|
|
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01)
|
|
|
|
small = -1e100
|
|
large = 1e100
|
|
prob1 = gkde.integrate_box([small, mean[1]], [large, large])
|
|
prob2 = gkde.integrate_box([small, small], [large, mean[1]])
|
|
|
|
assert_almost_equal(prob1, 0.5, decimal=1)
|
|
assert_almost_equal(prob2, 0.5, decimal=1)
|
|
assert_almost_equal(gkde.integrate_kde(gkde),
|
|
(kdepdf**2).sum()*(intervall**2), decimal=2)
|
|
assert_almost_equal(gkde.integrate_gaussian(mean, covariance),
|
|
(kdepdf*normpdf).sum()*(intervall**2), decimal=2)
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_kde_2d_weighted():
|
|
#some basic tests comparing to normal distribution
|
|
np.random.seed(8765678)
|
|
n_basesample = 500
|
|
|
|
mean = np.array([1.0, 3.0])
|
|
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
|
|
|
|
# Need transpose (shape (2, 500)) for kde
|
|
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
|
|
wn = np.random.rand(n_basesample)
|
|
|
|
# get kde for original sample
|
|
gkde = stats.gaussian_kde(xn, weights=wn)
|
|
|
|
# evaluate the density function for the kde for some points
|
|
x, y = np.mgrid[-7:7:500j, -7:7:500j]
|
|
grid_coords = np.vstack([x.ravel(), y.ravel()])
|
|
kdepdf = gkde.evaluate(grid_coords)
|
|
kdepdf = kdepdf.reshape(500, 500)
|
|
|
|
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]), mean=mean, cov=covariance)
|
|
intervall = y.ravel()[1] - y.ravel()[0]
|
|
|
|
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01)
|
|
|
|
small = -1e100
|
|
large = 1e100
|
|
prob1 = gkde.integrate_box([small, mean[1]], [large, large])
|
|
prob2 = gkde.integrate_box([small, small], [large, mean[1]])
|
|
|
|
assert_almost_equal(prob1, 0.5, decimal=1)
|
|
assert_almost_equal(prob2, 0.5, decimal=1)
|
|
assert_almost_equal(gkde.integrate_kde(gkde),
|
|
(kdepdf**2).sum()*(intervall**2), decimal=2)
|
|
assert_almost_equal(gkde.integrate_gaussian(mean, covariance),
|
|
(kdepdf*normpdf).sum()*(intervall**2), decimal=2)
|
|
|
|
|
|
def test_kde_bandwidth_method():
|
|
def scotts_factor(kde_obj):
|
|
"""Same as default, just check that it works."""
|
|
return np.power(kde_obj.n, -1./(kde_obj.d+4))
|
|
|
|
np.random.seed(8765678)
|
|
n_basesample = 50
|
|
xn = np.random.randn(n_basesample)
|
|
|
|
# Default
|
|
gkde = stats.gaussian_kde(xn)
|
|
# Supply a callable
|
|
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
|
|
# Supply a scalar
|
|
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
|
|
|
|
xs = np.linspace(-7,7,51)
|
|
kdepdf = gkde.evaluate(xs)
|
|
kdepdf2 = gkde2.evaluate(xs)
|
|
assert_almost_equal(kdepdf, kdepdf2)
|
|
kdepdf3 = gkde3.evaluate(xs)
|
|
assert_almost_equal(kdepdf, kdepdf3)
|
|
|
|
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
|
|
|
|
|
|
def test_kde_bandwidth_method_weighted():
|
|
def scotts_factor(kde_obj):
|
|
"""Same as default, just check that it works."""
|
|
return np.power(kde_obj.neff, -1./(kde_obj.d+4))
|
|
|
|
np.random.seed(8765678)
|
|
n_basesample = 50
|
|
xn = np.random.randn(n_basesample)
|
|
|
|
# Default
|
|
gkde = stats.gaussian_kde(xn)
|
|
# Supply a callable
|
|
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
|
|
# Supply a scalar
|
|
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
|
|
|
|
xs = np.linspace(-7,7,51)
|
|
kdepdf = gkde.evaluate(xs)
|
|
kdepdf2 = gkde2.evaluate(xs)
|
|
assert_almost_equal(kdepdf, kdepdf2)
|
|
kdepdf3 = gkde3.evaluate(xs)
|
|
assert_almost_equal(kdepdf, kdepdf3)
|
|
|
|
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
|
|
|
|
|
|
# Subclasses that should stay working (extracted from various sources).
|
|
# Unfortunately the earlier design of gaussian_kde made it necessary for users
|
|
# to create these kinds of subclasses, or call _compute_covariance() directly.
|
|
|
|
class _kde_subclass1(stats.gaussian_kde):
|
|
def __init__(self, dataset):
|
|
self.dataset = np.atleast_2d(dataset)
|
|
self.d, self.n = self.dataset.shape
|
|
self.covariance_factor = self.scotts_factor
|
|
self._compute_covariance()
|
|
|
|
|
|
class _kde_subclass2(stats.gaussian_kde):
|
|
def __init__(self, dataset):
|
|
self.covariance_factor = self.scotts_factor
|
|
super(_kde_subclass2, self).__init__(dataset)
|
|
|
|
|
|
class _kde_subclass3(stats.gaussian_kde):
|
|
def __init__(self, dataset, covariance):
|
|
self.covariance = covariance
|
|
stats.gaussian_kde.__init__(self, dataset)
|
|
|
|
def _compute_covariance(self):
|
|
self.inv_cov = np.linalg.inv(self.covariance)
|
|
self._norm_factor = np.sqrt(np.linalg.det(2 * np.pi * self.covariance))
|
|
|
|
|
|
class _kde_subclass4(stats.gaussian_kde):
|
|
def covariance_factor(self):
|
|
return 0.5 * self.silverman_factor()
|
|
|
|
|
|
def test_gaussian_kde_subclassing():
|
|
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
|
|
xs = np.linspace(-10, 10, num=50)
|
|
|
|
# gaussian_kde itself
|
|
kde = stats.gaussian_kde(x1)
|
|
ys = kde(xs)
|
|
|
|
# subclass 1
|
|
kde1 = _kde_subclass1(x1)
|
|
y1 = kde1(xs)
|
|
assert_array_almost_equal_nulp(ys, y1, nulp=10)
|
|
|
|
# subclass 2
|
|
kde2 = _kde_subclass2(x1)
|
|
y2 = kde2(xs)
|
|
assert_array_almost_equal_nulp(ys, y2, nulp=10)
|
|
|
|
# subclass 3
|
|
kde3 = _kde_subclass3(x1, kde.covariance)
|
|
y3 = kde3(xs)
|
|
assert_array_almost_equal_nulp(ys, y3, nulp=10)
|
|
|
|
# subclass 4
|
|
kde4 = _kde_subclass4(x1)
|
|
y4 = kde4(x1)
|
|
y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017]
|
|
|
|
assert_array_almost_equal(y_expected, y4, decimal=6)
|
|
|
|
# Not a subclass, but check for use of _compute_covariance()
|
|
kde5 = kde
|
|
kde5.covariance_factor = lambda: kde.factor
|
|
kde5._compute_covariance()
|
|
y5 = kde5(xs)
|
|
assert_array_almost_equal_nulp(ys, y5, nulp=10)
|
|
|
|
|
|
def test_gaussian_kde_covariance_caching():
|
|
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
|
|
xs = np.linspace(-10, 10, num=5)
|
|
# These expected values are from scipy 0.10, before some changes to
|
|
# gaussian_kde. They were not compared with any external reference.
|
|
y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475]
|
|
|
|
# Set the bandwidth, then reset it to the default.
|
|
kde = stats.gaussian_kde(x1)
|
|
kde.set_bandwidth(bw_method=0.5)
|
|
kde.set_bandwidth(bw_method='scott')
|
|
y2 = kde(xs)
|
|
|
|
assert_array_almost_equal(y_expected, y2, decimal=7)
|
|
|
|
|
|
def test_gaussian_kde_monkeypatch():
|
|
"""Ugly, but people may rely on this. See scipy pull request 123,
|
|
specifically the linked ML thread "Width of the Gaussian in stats.kde".
|
|
If it is necessary to break this later on, that is to be discussed on ML.
|
|
"""
|
|
x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
|
|
xs = np.linspace(-10, 10, num=50)
|
|
|
|
# The old monkeypatched version to get at Silverman's Rule.
|
|
kde = stats.gaussian_kde(x1)
|
|
kde.covariance_factor = kde.silverman_factor
|
|
kde._compute_covariance()
|
|
y1 = kde(xs)
|
|
|
|
# The new saner version.
|
|
kde2 = stats.gaussian_kde(x1, bw_method='silverman')
|
|
y2 = kde2(xs)
|
|
|
|
assert_array_almost_equal_nulp(y1, y2, nulp=10)
|
|
|
|
|
|
def test_kde_integer_input():
|
|
"""Regression test for #1181."""
|
|
x1 = np.arange(5)
|
|
kde = stats.gaussian_kde(x1)
|
|
y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721]
|
|
assert_array_almost_equal(kde(x1), y_expected, decimal=6)
|
|
|
|
|
|
_ftypes = ['float32', 'float64', 'float96', 'float128', 'int32', 'int64']
|
|
|
|
@pytest.mark.parametrize("bw_type", _ftypes + ["scott", "silverman"])
|
|
@pytest.mark.parametrize("weights_type", _ftypes)
|
|
@pytest.mark.parametrize("dataset_type", _ftypes)
|
|
@pytest.mark.parametrize("point_type", _ftypes)
|
|
def test_kde_output_dtype(point_type, dataset_type, weights_type, bw_type):
|
|
# Check whether the datatypes are available
|
|
point_type = getattr(np, point_type, None)
|
|
dataset_type = getattr(np, weights_type, None)
|
|
weights_type = getattr(np, weights_type, None)
|
|
|
|
if bw_type in ["scott", "silverman"]:
|
|
bw = bw_type
|
|
else:
|
|
bw_type = getattr(np, bw_type, None)
|
|
bw = bw_type(3) if bw_type else None
|
|
|
|
if any(dt is None for dt in [point_type, dataset_type, weights_type, bw]):
|
|
pytest.skip()
|
|
|
|
weights = np.arange(5, dtype=weights_type)
|
|
dataset = np.arange(5, dtype=dataset_type)
|
|
k = stats.kde.gaussian_kde(dataset, bw_method=bw, weights=weights)
|
|
points = np.arange(5, dtype=point_type)
|
|
result = k(points)
|
|
# weights are always cast to float64
|
|
assert result.dtype == np.result_type(dataset, points, np.float64(weights),
|
|
k.factor)
|
|
|
|
|
|
def test_pdf_logpdf():
|
|
np.random.seed(1)
|
|
n_basesample = 50
|
|
xn = np.random.randn(n_basesample)
|
|
|
|
# Default
|
|
gkde = stats.gaussian_kde(xn)
|
|
|
|
xs = np.linspace(-15, 12, 25)
|
|
pdf = gkde.evaluate(xs)
|
|
pdf2 = gkde.pdf(xs)
|
|
assert_almost_equal(pdf, pdf2, decimal=12)
|
|
|
|
logpdf = np.log(pdf)
|
|
logpdf2 = gkde.logpdf(xs)
|
|
assert_almost_equal(logpdf, logpdf2, decimal=12)
|
|
|
|
# There are more points than data
|
|
gkde = stats.gaussian_kde(xs)
|
|
pdf = np.log(gkde.evaluate(xn))
|
|
pdf2 = gkde.logpdf(xn)
|
|
assert_almost_equal(pdf, pdf2, decimal=12)
|
|
|
|
|
|
def test_pdf_logpdf_weighted():
|
|
np.random.seed(1)
|
|
n_basesample = 50
|
|
xn = np.random.randn(n_basesample)
|
|
wn = np.random.rand(n_basesample)
|
|
|
|
# Default
|
|
gkde = stats.gaussian_kde(xn, weights=wn)
|
|
|
|
xs = np.linspace(-15, 12, 25)
|
|
pdf = gkde.evaluate(xs)
|
|
pdf2 = gkde.pdf(xs)
|
|
assert_almost_equal(pdf, pdf2, decimal=12)
|
|
|
|
logpdf = np.log(pdf)
|
|
logpdf2 = gkde.logpdf(xs)
|
|
assert_almost_equal(logpdf, logpdf2, decimal=12)
|
|
|
|
# There are more points than data
|
|
gkde = stats.gaussian_kde(xs, weights=np.random.rand(len(xs)))
|
|
pdf = np.log(gkde.evaluate(xn))
|
|
pdf2 = gkde.logpdf(xn)
|
|
assert_almost_equal(pdf, pdf2, decimal=12)
|
|
|
|
|
|
def test_logpdf_overflow():
|
|
# regression test for gh-12988; testing against linalg instability for
|
|
# very high dimensionality kde
|
|
np.random.seed(1)
|
|
n_dimensions = 2500
|
|
n_samples = 5000
|
|
xn = np.array([np.random.randn(n_samples) + (n) for n in range(
|
|
0, n_dimensions)])
|
|
|
|
# Default
|
|
gkde = stats.gaussian_kde(xn)
|
|
|
|
logpdf = gkde.logpdf(np.arange(0, n_dimensions))
|
|
np.testing.assert_equal(np.isneginf(logpdf[0]), False)
|
|
np.testing.assert_equal(np.isnan(logpdf[0]), False)
|
|
|
|
|
|
def test_weights_intact():
|
|
# regression test for gh-9709: weights are not modified
|
|
np.random.seed(12345)
|
|
vals = np.random.lognormal(size=100)
|
|
weights = np.random.choice([1.0, 10.0, 100], size=vals.size)
|
|
orig_weights = weights.copy()
|
|
|
|
stats.gaussian_kde(np.log10(vals), weights=weights)
|
|
assert_allclose(weights, orig_weights, atol=1e-14, rtol=1e-14)
|
|
|
|
|
|
def test_weights_integer():
|
|
# integer weights are OK, cf gh-9709 (comment)
|
|
np.random.seed(12345)
|
|
values = [0.2, 13.5, 21.0, 75.0, 99.0]
|
|
weights = [1, 2, 4, 8, 16] # a list of integers
|
|
pdf_i = stats.gaussian_kde(values, weights=weights)
|
|
pdf_f = stats.gaussian_kde(values, weights=np.float64(weights))
|
|
|
|
xn = [0.3, 11, 88]
|
|
assert_allclose(pdf_i.evaluate(xn),
|
|
pdf_f.evaluate(xn), atol=1e-14, rtol=1e-14)
|
|
|
|
|
|
def test_seed():
|
|
# Test the seed option of the resample method
|
|
def test_seed_sub(gkde_trail):
|
|
n_sample = 200
|
|
# The results should be different without using seed
|
|
samp1 = gkde_trail.resample(n_sample)
|
|
samp2 = gkde_trail.resample(n_sample)
|
|
assert_raises(
|
|
AssertionError, assert_allclose, samp1, samp2, atol=1e-13
|
|
)
|
|
# Use integer seed
|
|
seed = 831
|
|
samp1 = gkde_trail.resample(n_sample, seed=seed)
|
|
samp2 = gkde_trail.resample(n_sample, seed=seed)
|
|
assert_allclose(samp1, samp2, atol=1e-13)
|
|
# Use RandomState
|
|
rstate1 = np.random.RandomState(seed=138)
|
|
samp1 = gkde_trail.resample(n_sample, seed=rstate1)
|
|
rstate2 = np.random.RandomState(seed=138)
|
|
samp2 = gkde_trail.resample(n_sample, seed=rstate2)
|
|
assert_allclose(samp1, samp2, atol=1e-13)
|
|
|
|
# check that np.random.Generator can be used (numpy >= 1.17)
|
|
if hasattr(np.random, 'default_rng'):
|
|
# obtain a np.random.Generator object
|
|
rng = np.random.default_rng(1234)
|
|
gkde_trail.resample(n_sample, seed=rng)
|
|
|
|
np.random.seed(8765678)
|
|
n_basesample = 500
|
|
wn = np.random.rand(n_basesample)
|
|
# Test 1D case
|
|
xn_1d = np.random.randn(n_basesample)
|
|
|
|
gkde_1d = stats.gaussian_kde(xn_1d)
|
|
test_seed_sub(gkde_1d)
|
|
gkde_1d_weighted = stats.gaussian_kde(xn_1d, weights=wn)
|
|
test_seed_sub(gkde_1d_weighted)
|
|
|
|
# Test 2D case
|
|
mean = np.array([1.0, 3.0])
|
|
covariance = np.array([[1.0, 2.0], [2.0, 6.0]])
|
|
xn_2d = np.random.multivariate_normal(mean, covariance, size=n_basesample).T
|
|
|
|
gkde_2d = stats.gaussian_kde(xn_2d)
|
|
test_seed_sub(gkde_2d)
|
|
gkde_2d_weighted = stats.gaussian_kde(xn_2d, weights=wn)
|
|
test_seed_sub(gkde_2d_weighted)
|
|
|