1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/stats/stats.py

8059 lines
274 KiB

# Copyright 2002 Gary Strangman. All rights reserved
# Copyright 2002-2016 The SciPy Developers
#
# The original code from Gary Strangman was heavily adapted for
# use in SciPy by Travis Oliphant. The original code came with the
# following disclaimer:
#
# This software is provided "as-is". There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application. In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
"""
A collection of basic statistical functions for Python. The function
names appear below.
Some scalar functions defined here are also available in the scipy.special
package where they work on arbitrary sized arrays.
Disclaimers: The function list is obviously incomplete and, worse, the
functions are not optimized. All functions have been tested (some more
so than others), but they are far from bulletproof. Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-) A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters. These functions don't necessarily have
both list and array versions but were deemed useful.
Central Tendency
----------------
.. autosummary::
:toctree: generated/
gmean
hmean
mode
Moments
-------
.. autosummary::
:toctree: generated/
moment
variation
skew
kurtosis
normaltest
Altered Versions
----------------
.. autosummary::
:toctree: generated/
tmean
tvar
tstd
tsem
describe
Frequency Stats
---------------
.. autosummary::
:toctree: generated/
itemfreq
scoreatpercentile
percentileofscore
cumfreq
relfreq
Variability
-----------
.. autosummary::
:toctree: generated/
obrientransform
sem
zmap
zscore
gstd
iqr
median_abs_deviation
Trimming Functions
------------------
.. autosummary::
:toctree: generated/
trimboth
trim1
Correlation Functions
---------------------
.. autosummary::
:toctree: generated/
pearsonr
fisher_exact
spearmanr
pointbiserialr
kendalltau
weightedtau
linregress
theilslopes
multiscale_graphcorr
Inferential Stats
-----------------
.. autosummary::
:toctree: generated/
ttest_1samp
ttest_ind
ttest_ind_from_stats
ttest_rel
chisquare
power_divergence
kstest
ks_1samp
ks_2samp
epps_singleton_2samp
mannwhitneyu
ranksums
wilcoxon
kruskal
friedmanchisquare
brunnermunzel
combine_pvalues
Statistical Distances
---------------------
.. autosummary::
:toctree: generated/
wasserstein_distance
energy_distance
ANOVA Functions
---------------
.. autosummary::
:toctree: generated/
f_oneway
Support Functions
-----------------
.. autosummary::
:toctree: generated/
rankdata
rvs_ratio_uniforms
References
----------
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
import warnings
import math
from math import gcd
from collections import namedtuple
import numpy as np
from numpy import array, asarray, ma
from scipy.spatial.distance import cdist
from scipy.ndimage import measurements
from scipy._lib._util import (_lazywhere, check_random_state, MapWrapper,
rng_integers, float_factorial)
import scipy.special as special
from scipy import linalg
from . import distributions
from . import mstats_basic
from ._stats_mstats_common import (_find_repeats, linregress, theilslopes,
siegelslopes)
from ._stats import (_kendall_dis, _toint64, _weightedrankedtau,
_local_correlations)
from ._rvs_sampling import rvs_ratio_uniforms
from ._hypotests import epps_singleton_2samp
__all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar',
'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation',
'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
'normaltest', 'jarque_bera', 'itemfreq',
'scoreatpercentile', 'percentileofscore',
'cumfreq', 'relfreq', 'obrientransform',
'sem', 'zmap', 'zscore', 'iqr', 'gstd', 'median_absolute_deviation',
'median_abs_deviation',
'sigmaclip', 'trimboth', 'trim1', 'trim_mean',
'f_oneway', 'F_onewayConstantInputWarning',
'F_onewayBadInputSizesWarning',
'PearsonRConstantInputWarning', 'PearsonRNearConstantInputWarning',
'pearsonr', 'fisher_exact', 'SpearmanRConstantInputWarning',
'spearmanr', 'pointbiserialr',
'kendalltau', 'weightedtau', 'multiscale_graphcorr',
'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp',
'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel',
'kstest', 'ks_1samp', 'ks_2samp',
'chisquare', 'power_divergence', 'mannwhitneyu',
'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
'rankdata', 'rvs_ratio_uniforms',
'combine_pvalues', 'wasserstein_distance', 'energy_distance',
'brunnermunzel', 'epps_singleton_2samp']
def _contains_nan(a, nan_policy='propagate'):
policies = ['propagate', 'raise', 'omit']
if nan_policy not in policies:
raise ValueError("nan_policy must be one of {%s}" %
', '.join("'%s'" % s for s in policies))
try:
# Calling np.sum to avoid creating a huge array into memory
# e.g. np.isnan(a).any()
with np.errstate(invalid='ignore'):
contains_nan = np.isnan(np.sum(a))
except TypeError:
# This can happen when attempting to sum things which are not
# numbers (e.g. as in the function `mode`). Try an alternative method:
try:
contains_nan = np.nan in set(a.ravel())
except TypeError:
# Don't know what to do. Fall back to omitting nan values and
# issue a warning.
contains_nan = False
nan_policy = 'omit'
warnings.warn("The input array could not be properly checked for nan "
"values. nan values will be ignored.", RuntimeWarning)
if contains_nan and nan_policy == 'raise':
raise ValueError("The input contains nan values")
return contains_nan, nan_policy
def _chk_asarray(a, axis):
if axis is None:
a = np.ravel(a)
outaxis = 0
else:
a = np.asarray(a)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
return a, outaxis
def _chk2_asarray(a, b, axis):
if axis is None:
a = np.ravel(a)
b = np.ravel(b)
outaxis = 0
else:
a = np.asarray(a)
b = np.asarray(b)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
if b.ndim == 0:
b = np.atleast_1d(b)
return a, b, outaxis
def _shape_with_dropped_axis(a, axis):
"""
Given an array `a` and an integer `axis`, return the shape
of `a` with the `axis` dimension removed.
Examples
--------
>>> a = np.zeros((3, 5, 2))
>>> _shape_with_dropped_axis(a, 1)
(3, 2)
"""
shp = list(a.shape)
try:
del shp[axis]
except IndexError:
raise np.AxisError(axis, a.ndim) from None
return tuple(shp)
def _broadcast_shapes(shape1, shape2):
"""
Given two shapes (i.e. tuples of integers), return the shape
that would result from broadcasting two arrays with the given
shapes.
Examples
--------
>>> _broadcast_shapes((2, 1), (4, 1, 3))
(4, 2, 3)
"""
d = len(shape1) - len(shape2)
if d <= 0:
shp1 = (1,)*(-d) + shape1
shp2 = shape2
elif d > 0:
shp1 = shape1
shp2 = (1,)*d + shape2
shape = []
for n1, n2 in zip(shp1, shp2):
if n1 == 1:
n = n2
elif n2 == 1 or n1 == n2:
n = n1
else:
raise ValueError(f'shapes {shape1} and {shape2} could not be '
'broadcast together')
shape.append(n)
return tuple(shape)
def _broadcast_shapes_with_dropped_axis(a, b, axis):
"""
Given two arrays `a` and `b` and an integer `axis`, find the
shape of the broadcast result after dropping `axis` from the
shapes of `a` and `b`.
Examples
--------
>>> a = np.zeros((5, 2, 1))
>>> b = np.zeros((1, 9, 3))
>>> _broadcast_shapes_with_dropped_axis(a, b, 1)
(5, 3)
"""
shp1 = _shape_with_dropped_axis(a, axis)
shp2 = _shape_with_dropped_axis(b, axis)
try:
shp = _broadcast_shapes(shp1, shp2)
except ValueError:
raise ValueError(f'non-axis shapes {shp1} and {shp2} could not be '
'broadcast together') from None
return shp
def gmean(a, axis=0, dtype=None):
"""
Compute the geometric mean along the specified axis.
Return the geometric average of the array elements.
That is: n-th root of (x1 * x2 * ... * xn)
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the geometric mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults to the
dtype of a, unless a has an integer dtype with a precision less than
that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
gmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
hmean : Harmonic mean
Notes
-----
The geometric average is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity because masked
arrays automatically mask any non-finite values.
Examples
--------
>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
"""
if not isinstance(a, np.ndarray):
# if not an ndarray object attempt to convert it
log_a = np.log(np.array(a, dtype=dtype))
elif dtype:
# Must change the default dtype allowing array type
if isinstance(a, np.ma.MaskedArray):
log_a = np.log(np.ma.asarray(a, dtype=dtype))
else:
log_a = np.log(np.asarray(a, dtype=dtype))
else:
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def hmean(a, axis=0, dtype=None):
"""
Calculate the harmonic mean along the specified axis.
That is: n / (1/x1 + 1/x2 + ... + 1/xn)
Parameters
----------
a : array_like
Input array, masked array or object that can be converted to an array.
axis : int or None, optional
Axis along which the harmonic mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults to the
dtype of `a`, unless `a` has an integer `dtype` with a precision less
than that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
hmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
gmean : Geometric mean
Notes
-----
The harmonic mean is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity.
Examples
--------
>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363
"""
if not isinstance(a, np.ndarray):
a = np.array(a, dtype=dtype)
if np.all(a >= 0):
# Harmonic mean only defined if greater than or equal to to zero.
if isinstance(a, np.ma.MaskedArray):
size = a.count(axis)
else:
if axis is None:
a = a.ravel()
size = a.shape[0]
else:
size = a.shape[axis]
with np.errstate(divide='ignore'):
return size / np.sum(1.0 / a, axis=axis, dtype=dtype)
else:
raise ValueError("Harmonic mean only defined if all elements greater "
"than or equal to zero")
ModeResult = namedtuple('ModeResult', ('mode', 'count'))
def mode(a, axis=0, nan_policy='propagate'):
"""
Return an array of the modal (most common) value in the passed array.
If there is more than one such value, only the smallest is returned.
The bin-count for the modal bins is also returned.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mode : ndarray
Array of modal values.
count : ndarray
Array of counts for each mode.
Examples
--------
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
ModeResult(mode=array([[3, 1, 0, 0]]), count=array([[1, 1, 1, 1]]))
To get mode of whole array, specify ``axis=None``:
>>> stats.mode(a, axis=None)
ModeResult(mode=array([3]), count=array([3]))
"""
a, axis = _chk_asarray(a, axis)
if a.size == 0:
return ModeResult(np.array([]), np.array([]))
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.mode(a, axis)
if a.dtype == object and np.nan in set(a.ravel()):
# Fall back to a slower method since np.unique does not work with NaN
scores = set(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape, dtype=a.dtype)
oldcounts = np.zeros(testshape, dtype=int)
for score in scores:
template = (a == score)
counts = np.expand_dims(np.sum(template, axis), axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return ModeResult(mostfrequent, oldcounts)
def _mode1D(a):
vals, cnts = np.unique(a, return_counts=True)
return vals[cnts.argmax()], cnts.max()
# np.apply_along_axis will convert the _mode1D tuples to a numpy array, casting types in the process
# This recreates the results without that issue
# View of a, rotated so the requested axis is last
in_dims = list(range(a.ndim))
a_view = np.transpose(a, in_dims[:axis] + in_dims[axis+1:] + [axis])
inds = np.ndindex(a_view.shape[:-1])
modes = np.empty(a_view.shape[:-1], dtype=a.dtype)
counts = np.zeros(a_view.shape[:-1], dtype=np.int_)
for ind in inds:
modes[ind], counts[ind] = _mode1D(a_view[ind])
newshape = list(a.shape)
newshape[axis] = 1
return ModeResult(modes.reshape(newshape), counts.reshape(newshape))
def _mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True), axis=None):
"""
Compute the trimmed mean.
This function finds the arithmetic mean of given values, ignoring values
outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None (default), then all
values are used. Either of the limit values in the tuple can also be
None representing a half-open interval.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to compute test. Default is None.
Returns
-------
tmean : float
Trimmed mean.
See Also
--------
trim_mean : Returns mean after trimming a proportion from both tails.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmean(x)
9.5
>>> stats.tmean(x, (3,17))
10.0
"""
a = asarray(a)
if limits is None:
return np.mean(a, None)
am = _mask_to_limits(a.ravel(), limits, inclusive)
return am.mean(axis=axis)
def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed variance.
This function computes the sample variance of an array of values,
while ignoring values which are outside of given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tvar : float
Trimmed variance.
Notes
-----
`tvar` computes the unbiased sample variance, i.e. it uses a correction
factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tvar(x)
35.0
>>> stats.tvar(x, (3,17))
20.0
"""
a = asarray(a)
a = a.astype(float)
if limits is None:
return a.var(ddof=ddof, axis=axis)
am = _mask_to_limits(a, limits, inclusive)
amnan = am.filled(fill_value=np.nan)
return np.nanvar(amnan, ddof=ddof, axis=axis)
def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""
Compute the trimmed minimum.
This function finds the miminum value of an array `a` along the
specified axis, but only considering values greater than a specified
lower limit.
Parameters
----------
a : array_like
Array of values.
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored.
When lowerlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmin : float, int or ndarray
Trimmed minimum.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmin(x)
0
>>> stats.tmin(x, 13)
13
>>> stats.tmin(x, 13, inclusive=False)
14
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.minimum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""
Compute the trimmed maximum.
This function computes the maximum value of an array along a given axis,
while ignoring values larger than a specified upper limit.
Parameters
----------
a : array_like
Array of values.
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmax : float, int or ndarray
Trimmed maximum.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmax(x)
19
>>> stats.tmax(x, 13)
13
>>> stats.tmax(x, 13, inclusive=False)
12
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.maximum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed sample standard deviation.
This function finds the sample standard deviation of given values,
ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tstd : float
Trimmed sample standard deviation.
Notes
-----
`tstd` computes the unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tstd(x)
5.9160797830996161
>>> stats.tstd(x, (3,17))
4.4721359549995796
"""
return np.sqrt(tvar(a, limits, inclusive, axis, ddof))
def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given
values, ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tsem : float
Trimmed standard error of the mean.
Notes
-----
`tsem` uses unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tsem(x)
1.3228756555322954
>>> stats.tsem(x, (3,17))
1.1547005383792515
"""
a = np.asarray(a).ravel()
if limits is None:
return a.std(ddof=ddof) / np.sqrt(a.size)
am = _mask_to_limits(a, limits, inclusive)
sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
return sd / np.sqrt(am.count())
#####################################
# MOMENTS #
#####################################
def moment(a, moment=1, axis=0, nan_policy='propagate'):
r"""
Calculate the nth moment about the mean for a sample.
A moment is a specific quantitative measure of the shape of a set of
points. It is often used to calculate coefficients of skewness and kurtosis
due to its close relationship with them.
Parameters
----------
a : array_like
Input array.
moment : int or array_like of ints, optional
Order of central moment that is returned. Default is 1.
axis : int or None, optional
Axis along which the central moment is computed. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.
See Also
--------
kurtosis, skew, describe
Notes
-----
The k-th central moment of a data sample is:
.. math::
m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k
Where n is the number of samples and x-bar is the mean. This function uses
exponentiation by squares [1]_ for efficiency.
References
----------
.. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
Examples
--------
>>> from scipy.stats import moment
>>> moment([1, 2, 3, 4, 5], moment=1)
0.0
>>> moment([1, 2, 3, 4, 5], moment=2)
2.0
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.moment(a, moment, axis)
if a.size == 0:
# empty array, return nan(s) with shape matching `moment`
if np.isscalar(moment):
return np.nan
else:
return np.full(np.asarray(moment).shape, np.nan, dtype=np.float64)
# for array_like moment input, return a value for each.
if not np.isscalar(moment):
mmnt = [_moment(a, i, axis) for i in moment]
return np.array(mmnt)
else:
return _moment(a, moment, axis)
def _moment(a, moment, axis):
if np.abs(moment - np.round(moment)) > 0:
raise ValueError("All moment parameters must be integers")
if moment == 0:
# When moment equals 0, the result is 1, by definition.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.ones(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return 1.0
elif moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
# Exponentiation by squares: form exponent sequence
n_list = [moment]
current_n = moment
while current_n > 2:
if current_n % 2:
current_n = (current_n - 1) / 2
else:
current_n /= 2
n_list.append(current_n)
# Starting point for exponentiation by squares
a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis)
if n_list[-1] == 1:
s = a_zero_mean.copy()
else:
s = a_zero_mean**2
# Perform multiplications
for n in n_list[-2::-1]:
s = s**2
if n % 2:
s *= a_zero_mean
return np.mean(s, axis)
def variation(a, axis=0, nan_policy='propagate'):
"""
Compute the coefficient of variation.
The coefficient of variation is the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default
is 0. If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
variation : ndarray
The calculated variation along the requested axis.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
>>> from scipy.stats import variation
>>> variation([1, 2, 3, 4, 5])
0.47140452079103173
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.variation(a, axis)
return a.std(axis) / a.mean(axis)
def skew(a, axis=0, bias=True, nan_policy='propagate'):
r"""
Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For
unimodal continuous distributions, a skewness value greater than zero means
that there is more weight in the right tail of the distribution. The
function `skewtest` can be used to determine if the skewness value
is close enough to zero, statistically speaking.
Parameters
----------
a : ndarray
Input array.
axis : int or None, optional
Axis along which skewness is calculated. Default is 0.
If None, compute over the whole array `a`.
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
skewness : ndarray
The skewness of values along an axis, returning 0 where all values are
equal.
Notes
-----
The sample skewness is computed as the Fisher-Pearson coefficient
of skewness, i.e.
.. math::
g_1=\frac{m_3}{m_2^{3/2}}
where
.. math::
m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i
is the biased sample :math:`i\texttt{th}` central moment, and :math:`\bar{x}` is
the sample mean. If ``bias`` is False, the calculations are
corrected for bias and the value computed is the adjusted
Fisher-Pearson standardized moment coefficient, i.e.
.. math::
G_1=\frac{k_3}{k_2^{3/2}}=
\frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 2.2.24.1
Examples
--------
>>> from scipy.stats import skew
>>> skew([1, 2, 3, 4, 5])
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0])
0.2650554122698573
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skew(a, axis, bias)
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
zero = (m2 == 0)
vals = _lazywhere(~zero, (m2, m3),
lambda m2, m3: m3 / m2**1.5,
0.)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5
np.place(vals, can_correct, nval)
if vals.ndim == 0:
return vals.item()
return vals
def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
"""
Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the
variance. If Fisher's definition is used, then 3.0 is subtracted from
the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias coming from biased moment estimators
Use `kurtosistest` to see if result is close enough to normal.
Parameters
----------
a : array
Data for which the kurtosis is calculated.
axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0.
If None, compute over the whole array `a`.
fisher : bool, optional
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
kurtosis : array
The kurtosis of values along an axis. If all values are equal,
return -3 for Fisher's definition and 0 for Pearson's definition.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
In Fisher's definiton, the kurtosis of the normal distribution is zero.
In the following example, the kurtosis is close to zero, because it was
calculated from the dataset, not from the continuous distribution.
>>> from scipy.stats import norm, kurtosis
>>> data = norm.rvs(size=1000, random_state=3)
>>> kurtosis(data)
-0.06928694200380558
The distribution with a higher kurtosis has a heavier tail.
The zero valued kurtosis of the normal distribution in Fisher's definition
can serve as a reference point.
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> from scipy.stats import kurtosis
>>> x = np.linspace(-5, 5, 100)
>>> ax = plt.subplot()
>>> distnames = ['laplace', 'norm', 'uniform']
>>> for distname in distnames:
... if distname == 'uniform':
... dist = getattr(stats, distname)(loc=-2, scale=4)
... else:
... dist = getattr(stats, distname)
... data = dist.rvs(size=1000)
... kur = kurtosis(data, fisher=True)
... y = dist.pdf(x)
... ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3)))
... ax.legend()
The Laplace distribution has a heavier tail than the normal distribution.
The uniform distribution (which has negative kurtosis) has the thinnest
tail.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosis(a, axis, fisher, bias)
n = a.shape[axis]
m2 = moment(a, 2, axis)
m4 = moment(a, 4, axis)
zero = (m2 == 0)
with np.errstate(all='ignore'):
vals = np.where(zero, 0, m4 / m2**2.0)
if not bias:
can_correct = (n > 3) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
np.place(vals, can_correct, nval + 3.0)
if vals.ndim == 0:
vals = vals.item() # array scalar
return vals - 3 if fisher else vals
DescribeResult = namedtuple('DescribeResult',
('nobs', 'minmax', 'mean', 'variance', 'skewness',
'kurtosis'))
def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
"""
Compute several descriptive statistics of the passed array.
Parameters
----------
a : array_like
Input data.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
ddof : int, optional
Delta degrees of freedom (only for variance). Default is 1.
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected for
statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
nobs : int or ndarray of ints
Number of observations (length of data along `axis`).
When 'omit' is chosen as nan_policy, each column is counted separately.
minmax: tuple of ndarrays or floats
Minimum and maximum value of data array.
mean : ndarray or float
Arithmetic mean of data along axis.
variance : ndarray or float
Unbiased variance of the data along axis, denominator is number of
observations minus one.
skewness : ndarray or float
Skewness, based on moment calculations with denominator equal to
the number of observations, i.e. no degrees of freedom correction.
kurtosis : ndarray or float
Kurtosis (Fisher). The kurtosis is normalized so that it is
zero for the normal distribution. No degrees of freedom are used.
See Also
--------
skew, kurtosis
Examples
--------
>>> from scipy import stats
>>> a = np.arange(10)
>>> stats.describe(a)
DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666,
skewness=0.0, kurtosis=-1.2242424242424244)
>>> b = [[1, 2], [3, 4]]
>>> stats.describe(b)
DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
mean=array([2., 3.]), variance=array([2., 2.]),
skewness=array([0., 0.]), kurtosis=array([-2., -2.]))
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.describe(a, axis, ddof, bias)
if a.size == 0:
raise ValueError("The input must not be empty.")
n = a.shape[axis]
mm = (np.min(a, axis=axis), np.max(a, axis=axis))
m = np.mean(a, axis=axis)
v = np.var(a, axis=axis, ddof=ddof)
sk = skew(a, axis, bias=bias)
kurt = kurtosis(a, axis, bias=bias)
return DescribeResult(n, mm, m, v, sk, kurt)
#####################################
# NORMALITY TESTS #
#####################################
SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
def skewtest(a, axis=0, nan_policy='propagate'):
"""
Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of
the population that the sample was drawn from is the same
as that of a corresponding normal distribution.
Parameters
----------
a : array
The data to be tested.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
Two-sided p-value for the hypothesis test.
Notes
-----
The sample size must be at least 8.
References
----------
.. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr.,
"A suggestion for using powerful and informative tests of
normality", American Statistician 44, pp. 316-321, 1990.
Examples
--------
>>> from scipy.stats import skewtest
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
>>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
>>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skewtest(a, axis)
if axis is None:
a = np.ravel(a)
axis = 0
b2 = skew(a, axis)
n = a.shape[axis]
if n < 8:
raise ValueError(
"skewtest is not valid with less than 8 samples; %i samples"
" were given." % int(n))
y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
((n-2.0) * (n+5) * (n+7) * (n+9)))
W2 = -1 + math.sqrt(2 * (beta2 - 1))
delta = 1 / math.sqrt(0.5 * math.log(W2))
alpha = math.sqrt(2.0 / (W2 - 1))
y = np.where(y == 0, 1, y)
Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))
return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
def kurtosistest(a, axis=0, nan_policy='propagate'):
"""
Test whether a dataset has normal kurtosis.
This function tests the null hypothesis that the kurtosis
of the population from which the sample was drawn is that
of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.
Parameters
----------
a : array
Array of the sample data.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
The two-sided p-value for the hypothesis test.
Notes
-----
Valid only for n>20. This function uses the method described in [1]_.
References
----------
.. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.
Examples
--------
>>> from scipy.stats import kurtosistest
>>> kurtosistest(list(range(20)))
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)
>>> np.random.seed(28041990)
>>> s = np.random.normal(0, 1, 1000)
>>> kurtosistest(s)
KurtosistestResult(statistic=1.2317590987707365, pvalue=0.21803908613450895)
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosistest(a, axis)
n = a.shape[axis]
if n < 5:
raise ValueError(
"kurtosistest requires at least 5 observations; %i observations"
" were given." % int(n))
if n < 20:
warnings.warn("kurtosistest only valid for n>=20 ... continuing "
"anyway, n=%i" % int(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) / (n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1
x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4
# [1]_ Eq. 2:
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
(n*(n-2)*(n-3)))
# [1]_ Eq. 3:
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2/(9.0*A)
denom = 1 + x*np.sqrt(2/(A-4.0))
term2 = np.sign(denom) * np.where(denom == 0.0, np.nan,
np.power((1-2.0/A)/np.abs(denom), 1/3.0))
if np.any(denom == 0):
msg = "Test statistic not defined in some cases due to division by " \
"zero. Return nan in that case..."
warnings.warn(msg, RuntimeWarning)
Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5
if Z.ndim == 0:
Z = Z[()]
# zprob uses upper tail, so Z needs to be positive
return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
def normaltest(a, axis=0, nan_policy='propagate'):
"""
Test whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes
from a normal distribution. It is based on D'Agostino and
Pearson's [1]_, [2]_ test that combines skew and kurtosis to
produce an omnibus test of normality.
Parameters
----------
a : array_like
The array containing the sample to be tested.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
``k`` is the z-score returned by `kurtosistest`.
pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.
References
----------
.. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
moderate and large sample size", Biometrika, 58, 341-348
.. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
normality", Biometrika, 60, 613-622
Examples
--------
>>> from scipy import stats
>>> pts = 1000
>>> np.random.seed(28041990)
>>> a = np.random.normal(0, 1, size=pts)
>>> b = np.random.normal(2, 1, size=pts)
>>> x = np.concatenate((a, b))
>>> k2, p = stats.normaltest(x)
>>> alpha = 1e-3
>>> print("p = {:g}".format(p))
p = 3.27207e-11
>>> if p < alpha: # null hypothesis: x comes from a normal distribution
... print("The null hypothesis can be rejected")
... else:
... print("The null hypothesis cannot be rejected")
The null hypothesis can be rejected
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.normaltest(a, axis)
s, _ = skewtest(a, axis)
k, _ = kurtosistest(a, axis)
k2 = s*s + k*k
return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
Jarque_beraResult = namedtuple('Jarque_beraResult', ('statistic', 'pvalue'))
def jarque_bera(x):
"""
Perform the Jarque-Bera goodness of fit test on sample data.
The Jarque-Bera test tests whether the sample data has the skewness and
kurtosis matching a normal distribution.
Note that this test only works for a large enough number of data samples
(>2000) as the test statistic asymptotically has a Chi-squared distribution
with 2 degrees of freedom.
Parameters
----------
x : array_like
Observations of a random variable.
Returns
-------
jb_value : float
The test statistic.
p : float
The p-value for the hypothesis test.
References
----------
.. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
homoscedasticity and serial independence of regression residuals",
6 Econometric Letters 255-259.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(987654321)
>>> x = np.random.normal(0, 1, 100000)
>>> jarque_bera_test = stats.jarque_bera(x)
>>> jarque_bera_test
Jarque_beraResult(statistic=4.716570798957913, pvalue=0.0945822550304295)
>>> jarque_bera_test.statistic
4.716570798957913
>>> jarque_bera_test.pvalue
0.0945822550304295
"""
x = np.asarray(x)
n = x.size
if n == 0:
raise ValueError('At least one observation is required.')
mu = x.mean()
diffx = x - mu
skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.)
kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2
jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4)
p = 1 - distributions.chi2.cdf(jb_value, 2)
return Jarque_beraResult(jb_value, p)
#####################################
# FREQUENCY FUNCTIONS #
#####################################
# deindent to work around numpy/gh-16202
@np.deprecate(
message="`itemfreq` is deprecated and will be removed in a "
"future version. Use instead `np.unique(..., return_counts=True)`")
def itemfreq(a):
"""
Return a 2-D array of item frequencies.
Parameters
----------
a : (N,) array_like
Input array.
Returns
-------
itemfreq : (K, 2) ndarray
A 2-D frequency table. Column 1 contains sorted, unique values from
`a`, column 2 contains their respective counts.
Examples
--------
>>> from scipy import stats
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[ 0., 2.],
[ 1., 4.],
[ 2., 2.],
[ 4., 1.],
[ 5., 1.]])
>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])
>>> stats.itemfreq(a/10.)
array([[ 0. , 2. ],
[ 0.1, 4. ],
[ 0.2, 2. ],
[ 0.4, 1. ],
[ 0.5, 1. ]])
"""
items, inv = np.unique(a, return_inverse=True)
freq = np.bincount(inv)
return np.array([items, freq]).T
def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
axis=None):
"""
Calculate the score at a given percentile of the input sequence.
For example, the score at `per=50` is the median. If the desired quantile
lies between two data points, we interpolate between them, according to
the value of `interpolation`. If the parameter `limit` is provided, it
should be a tuple (lower, upper) of two values.
Parameters
----------
a : array_like
A 1-D array of values from which to extract score.
per : array_like
Percentile(s) at which to extract score. Values should be in range
[0,100].
limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to
compute the percentile. Values of `a` outside
this (closed) interval will be ignored.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
Specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`
The following options are available (default is 'fraction'):
* 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the
fractional part of the index surrounded by ``i`` and ``j``
* 'lower': ``i``
* 'higher': ``j``
axis : int, optional
Axis along which the percentiles are computed. Default is None. If
None, compute over the whole array `a`.
Returns
-------
score : float or ndarray
Score at percentile(s).
See Also
--------
percentileofscore, numpy.percentile
Notes
-----
This function will become obsolete in the future.
For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality
that `scoreatpercentile` provides. And it's significantly faster.
Therefore it's recommended to use `numpy.percentile` for users that have
numpy >= 1.9.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
# adapted from NumPy's percentile function. When we require numpy >= 1.8,
# the implementation of this function can be replaced by np.percentile.
a = np.asarray(a)
if a.size == 0:
# empty array, return nan(s) with shape matching `per`
if np.isscalar(per):
return np.nan
else:
return np.full(np.asarray(per).shape, np.nan, dtype=np.float64)
if limit:
a = a[(limit[0] <= a) & (a <= limit[1])]
sorted_ = np.sort(a, axis=axis)
if axis is None:
axis = 0
return _compute_qth_percentile(sorted_, per, interpolation_method, axis)
# handle sequence of per's without calling sort multiple times
def _compute_qth_percentile(sorted_, per, interpolation_method, axis):
if not np.isscalar(per):
score = [_compute_qth_percentile(sorted_, i,
interpolation_method, axis)
for i in per]
return np.array(score)
if not (0 <= per <= 100):
raise ValueError("percentile must be in the range [0, 100]")
indexer = [slice(None)] * sorted_.ndim
idx = per / 100. * (sorted_.shape[axis] - 1)
if int(idx) != idx:
# round fractional indices according to interpolation method
if interpolation_method == 'lower':
idx = int(np.floor(idx))
elif interpolation_method == 'higher':
idx = int(np.ceil(idx))
elif interpolation_method == 'fraction':
pass # keep idx as fraction and interpolate
else:
raise ValueError("interpolation_method can only be 'fraction', "
"'lower' or 'higher'")
i = int(idx)
if i == idx:
indexer[axis] = slice(i, i + 1)
weights = array(1)
sumval = 1.0
else:
indexer[axis] = slice(i, i + 2)
j = i + 1
weights = array([(j - idx), (idx - i)], float)
wshape = [1] * sorted_.ndim
wshape[axis] = 2
weights.shape = wshape
sumval = weights.sum()
# Use np.add.reduce (== np.sum but a little faster) to coerce data type
return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval
def percentileofscore(a, score, kind='rank'):
"""
Compute the percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a : array_like
Array of scores to which `score` is compared.
score : int or float
Score that is compared to the elements in `a`.
kind : {'rank', 'weak', 'strict', 'mean'}, optional
Specifies the interpretation of the resulting score.
The following options are available (default is 'rank'):
* 'rank': Average percentage ranking of score. In case of multiple
matches, average the percentage rankings of all matching scores.
* 'weak': This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80% means that 80%
of values are less than or equal to the provided score.
* 'strict': Similar to "weak", except that only values that are
strictly less than the given score are counted.
* 'mean': The average of the "weak" and "strict" scores, often used
in testing. See https://en.wikipedia.org/wiki/Percentile_rank
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
See Also
--------
numpy.percentile
Examples
--------
Three-quarters of the given values lie below a given score:
>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
"""
if np.isnan(score):
return np.nan
a = np.asarray(a)
n = len(a)
if n == 0:
return 100.0
if kind == 'rank':
left = np.count_nonzero(a < score)
right = np.count_nonzero(a <= score)
pct = (right + left + (1 if right > left else 0)) * 50.0/n
return pct
elif kind == 'strict':
return np.count_nonzero(a < score) / n * 100
elif kind == 'weak':
return np.count_nonzero(a <= score) / n * 100
elif kind == 'mean':
pct = (np.count_nonzero(a < score) + np.count_nonzero(a <= score)) / n * 50
return pct
else:
raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")
HistogramResult = namedtuple('HistogramResult',
('count', 'lowerlimit', 'binsize', 'extrapoints'))
def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
"""
Create a histogram.
Separate the range into several bins and return the number of instances
in each bin.
Parameters
----------
a : array_like
Array of scores which will be put into bins.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultlimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
printextras : bool, optional
If True, if there are extra points (i.e. the points that fall outside
the bin limits) a warning is raised saying how many of those points
there are. Default is False.
Returns
-------
count : ndarray
Number of points (or sum of weights) in each bin.
lowerlimit : float
Lowest value of histogram, the lower limit of the first bin.
binsize : float
The size of the bins (all bins have the same size).
extrapoints : int
The number of points outside the range of the histogram.
See Also
--------
numpy.histogram
Notes
-----
This histogram is based on numpy's histogram but has a larger range by
default if default limits is not set.
"""
a = np.ravel(a)
if defaultlimits is None:
if a.size == 0:
# handle empty arrays. Undetermined range, so use 0-1.
defaultlimits = (0, 1)
else:
# no range given, so use values in `a`
data_min = a.min()
data_max = a.max()
# Have bins extend past min and max values slightly
s = (data_max - data_min) / (2. * (numbins - 1.))
defaultlimits = (data_min - s, data_max + s)
# use numpy's histogram method to compute bins
hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
weights=weights)
# hist are not always floats, convert to keep with old output
hist = np.array(hist, dtype=float)
# fixed width for bins is assumed, as numpy's histogram gives
# fixed width bins for int values for 'bins'
binsize = bin_edges[1] - bin_edges[0]
# calculate number of extra points
extrapoints = len([v for v in a
if defaultlimits[0] > v or v > defaultlimits[1]])
if extrapoints > 0 and printextras:
warnings.warn("Points outside given histogram range = %s"
% extrapoints)
return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)
CumfreqResult = namedtuple('CumfreqResult',
('cumcount', 'lowerlimit', 'binsize',
'extrapoints'))
def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Return a cumulative frequency histogram, using the histogram function.
A cumulative histogram is a mapping that counts the cumulative number of
observations in all of the bins up to the specified bin.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
cumcount : ndarray
Binned values of cumulative frequency.
lowerlimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> x = [1, 4, 2, 1, 3, 1]
>>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> res.cumcount
array([ 1., 2., 3., 3.])
>>> res.extrapoints
3
Create a normal distribution with 1000 random values
>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate cumulative frequencies
>>> res = stats.cumfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
... res.cumcount.size)
Plot histogram and cumulative histogram
>>> fig = plt.figure(figsize=(10, 4))
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.hist(samples, bins=25)
>>> ax1.set_title('Histogram')
>>> ax2.bar(x, res.cumcount, width=res.binsize)
>>> ax2.set_title('Cumulative histogram')
>>> ax2.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
cumhist = np.cumsum(h * 1, axis=0)
return CumfreqResult(cumhist, l, b, e)
RelfreqResult = namedtuple('RelfreqResult',
('frequency', 'lowerlimit', 'binsize',
'extrapoints'))
def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Return a relative frequency histogram, using the histogram function.
A relative frequency histogram is a mapping of the number of
observations in each of the bins relative to the total of observations.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
frequency : ndarray
Binned values of relative frequency.
lowerlimit : float
Lower real limit.
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> a = np.array([2, 4, 1, 2, 3, 2])
>>> res = stats.relfreq(a, numbins=4)
>>> res.frequency
array([ 0.16666667, 0.5 , 0.16666667, 0.16666667])
>>> np.sum(res.frequency) # relative frequencies should add up to 1
1.0
Create a normal distribution with 1000 random values
>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate relative frequencies
>>> res = stats.relfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
... res.frequency.size)
Plot relative frequency histogram
>>> fig = plt.figure(figsize=(5, 4))
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.bar(x, res.frequency, width=res.binsize)
>>> ax.set_title('Relative frequency histogram')
>>> ax.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
a = np.asanyarray(a)
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
h = h / a.shape[0]
return RelfreqResult(h, l, b, e)
#####################################
# VARIABILITY FUNCTIONS #
#####################################
def obrientransform(*args):
"""
Compute the O'Brien transform on input data (any number of arrays).
Used to test for homogeneity of variance prior to running one-way stats.
Each array in ``*args`` is one level of a factor.
If `f_oneway` is run on the transformed data and found significant,
the variances are unequal. From Maxwell and Delaney [1]_, p.112.
Parameters
----------
args : tuple of array_like
Any number of arrays.
Returns
-------
obrientransform : ndarray
Transformed data for use in an ANOVA. The first dimension
of the result corresponds to the sequence of transformed
arrays. If the arrays given are all 1-D of the same length,
the return value is a 2-D array; otherwise it is a 1-D array
of type object, with each element being an ndarray.
References
----------
.. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.
Examples
--------
We'll test the following data sets for differences in their variance.
>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
Apply the O'Brien transform to the data.
>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)
Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
transformed data.
>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335
If we require that ``p < 0.05`` for significance, we cannot conclude
that the variances are different.
"""
TINY = np.sqrt(np.finfo(float).eps)
# `arrays` will hold the transformed arguments.
arrays = []
sLast = None
for arg in args:
a = np.asarray(arg)
n = len(a)
mu = np.mean(a)
sq = (a - mu)**2
sumsq = sq.sum()
# The O'Brien transform.
t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))
# Check that the mean of the transformed data is equal to the
# original variance.
var = sumsq / (n - 1)
if abs(var - np.mean(t)) > TINY:
raise ValueError('Lack of convergence in obrientransform.')
arrays.append(t)
sLast = a.shape
if sLast:
for arr in arrays[:-1]:
if sLast != arr.shape:
return np.array(arrays, dtype=object)
return np.array(arrays)
def sem(a, axis=0, ddof=1, nan_policy='propagate'):
"""
Compute standard error of the mean.
Calculate the standard error of the mean (or standard error of
measurement) of the values in the input array.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` is different to the default (0) used by other
ddof containing routines, such as np.std and np.nanstd.
Examples
--------
Find standard error along the first axis:
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
Find standard error across the whole array, using n degrees of freedom:
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.sem(a, axis, ddof)
n = a.shape[axis]
s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
return s
def zscore(a, axis=0, ddof=0, nan_policy='propagate'):
"""
Compute the z score.
Compute the z score of each value in the sample, relative to the
sample mean and standard deviation.
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
zscore : array_like
The z-scores, standardized by mean and standard deviation of
input array `a`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
Examples
--------
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
0.6748, -1.1488, -1.3324])
Computing along a specified axis, using n-1 degrees of freedom
(``ddof=1``) to calculate the standard deviation:
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
"""
a = np.asanyarray(a)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
mns = np.nanmean(a=a, axis=axis, keepdims=True)
sstd = np.nanstd(a=a, axis=axis, ddof=ddof, keepdims=True)
else:
mns = a.mean(axis=axis, keepdims=True)
sstd = a.std(axis=axis, ddof=ddof, keepdims=True)
return (a - mns) / sstd
def zmap(scores, compare, axis=0, ddof=0):
"""
Calculate the relative z-scores.
Return an array of z-scores, i.e., scores that are standardized to
zero mean and unit variance, where mean and variance are calculated
from the comparison array.
Parameters
----------
scores : array_like
The input for which z-scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the
normalization are taken; assumed to have the same dimension as
`scores`.
axis : int or None, optional
Axis over which mean and variance of `compare` are calculated.
Default is 0. If None, compute over the whole array `scores`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
Returns
-------
zscore : array_like
Z-scores, in the same shape as `scores`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
Examples
--------
>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
"""
scores, compare = map(np.asanyarray, [scores, compare])
mns = compare.mean(axis=axis, keepdims=True)
sstd = compare.std(axis=axis, ddof=ddof, keepdims=True)
return (scores - mns) / sstd
def gstd(a, axis=0, ddof=1):
"""
Calculate the geometric standard deviation of an array.
The geometric standard deviation describes the spread of a set of numbers
where the geometric mean is preferred. It is a multiplicative factor, and
so a dimensionless quantity.
It is defined as the exponent of the standard deviation of ``log(a)``.
Mathematically the population geometric standard deviation can be
evaluated as::
gstd = exp(std(log(a)))
.. versionadded:: 1.3.0
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int, tuple or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degree of freedom correction in the calculation of the
geometric standard deviation. Default is 1.
Returns
-------
ndarray or float
An array of the geometric standard deviation. If `axis` is None or `a`
is a 1d array a float is returned.
Notes
-----
As the calculation requires the use of logarithms the geometric standard
deviation only supports strictly positive values. Any non-positive or
infinite values will raise a `ValueError`.
The geometric standard deviation is sometimes confused with the exponent of
the standard deviation, ``exp(std(a))``. Instead the geometric standard
deviation is ``exp(std(log(a)))``.
The default value for `ddof` is different to the default value (0) used
by other ddof containing functions, such as ``np.std`` and ``np.nanstd``.
Examples
--------
Find the geometric standard deviation of a log-normally distributed sample.
Note that the standard deviation of the distribution is one, on a
log scale this evaluates to approximately ``exp(1)``.
>>> from scipy.stats import gstd
>>> np.random.seed(123)
>>> sample = np.random.lognormal(mean=0, sigma=1, size=1000)
>>> gstd(sample)
2.7217860664589946
Compute the geometric standard deviation of a multidimensional array and
of a given axis.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> gstd(a, axis=None)
2.2944076136018947
>>> gstd(a, axis=2)
array([[1.82424757, 1.22436866, 1.13183117],
[1.09348306, 1.07244798, 1.05914985]])
>>> gstd(a, axis=(1,2))
array([2.12939215, 1.22120169])
The geometric standard deviation further handles masked arrays.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> ma = np.ma.masked_where(a > 16, a)
>>> ma
masked_array(
data=[[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[--, --, --, --],
[--, --, --, --]]],
mask=[[[False, False, False, False],
[False, False, False, False],
[False, False, False, False]],
[[False, False, False, False],
[ True, True, True, True],
[ True, True, True, True]]],
fill_value=999999)
>>> gstd(ma, axis=2)
masked_array(
data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
[1.0934830582350938, --, --]],
mask=[[False, False, False],
[False, True, True]],
fill_value=999999)
"""
a = np.asanyarray(a)
log = ma.log if isinstance(a, ma.MaskedArray) else np.log
try:
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
return np.exp(np.std(log(a), axis=axis, ddof=ddof))
except RuntimeWarning as w:
if np.isinf(a).any():
raise ValueError(
'Infinite value encountered. The geometric standard deviation '
'is defined for strictly positive values only.')
a_nan = np.isnan(a)
a_nan_any = a_nan.any()
# exclude NaN's from negativity check, but
# avoid expensive masking for arrays with no NaN
if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or
(not a_nan_any and np.less_equal(a, 0).any())):
raise ValueError(
'Non positive value encountered. The geometric standard '
'deviation is defined for strictly positive values only.')
elif 'Degrees of freedom <= 0 for slice' == str(w):
raise ValueError(w)
else:
# Remaining warnings don't need to be exceptions.
return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof))
except TypeError:
raise ValueError(
'Invalid array input. The inputs could not be '
'safely coerced to any supported types')
# Private dictionary initialized only once at module level
# See https://en.wikipedia.org/wiki/Robust_measures_of_scale
_scale_conversions = {'raw': 1.0,
'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}
def iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate',
interpolation='linear', keepdims=False):
r"""
Compute the interquartile range of the data along the specified axis.
The interquartile range (IQR) is the difference between the 75th and
25th percentile of the data. It is a measure of the dispersion
similar to standard deviation or variance, but is much more robust
against outliers [2]_.
The ``rng`` parameter allows this function to compute other
percentile ranges than the actual IQR. For example, setting
``rng=(0, 100)`` is equivalent to `numpy.ptp`.
The IQR of an empty array is `np.nan`.
.. versionadded:: 0.18.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or sequence of int, optional
Axis along which the range is computed. The default is to
compute the IQR for the entire array.
rng : Two-element sequence containing floats in range of [0,100] optional
Percentiles over which to compute the range. Each must be
between 0 and 100, inclusive. The default is the true IQR:
`(25, 75)`. The order of the elements is not important.
scale : scalar or str, optional
The numerical value of scale will be divided out of the final
result. The following string values are recognized:
* 'raw' : No scaling, just return the raw IQR.
**Deprecated!** Use `scale=1` instead.
* 'normal' : Scale by
:math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.
The default is 1.0. The use of scale='raw' is deprecated.
Array-like scale is also allowed, as long
as it broadcasts correctly to the output such that
``out / scale`` is a valid operation. The output dimensions
depend on the input array, `x`, the `axis` argument, and the
`keepdims` flag.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional
Specifies the interpolation method to use when the percentile
boundaries lie between two data points `i` and `j`.
The following options are available (default is 'linear'):
* 'linear': `i + (j - i) * fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
* 'lower': `i`.
* 'higher': `j`.
* 'nearest': `i` or `j` whichever is nearest.
* 'midpoint': `(i + j) / 2`.
keepdims : bool, optional
If this is set to `True`, the reduced axes are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array `x`.
Returns
-------
iqr : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var
Notes
-----
This function is heavily dependent on the version of `numpy` that is
installed. Versions greater than 1.11.0b3 are highly recommended, as they
include a number of enhancements and fixes to `numpy.percentile` and
`numpy.nanpercentile` that affect the operation of this function. The
following modifications apply:
Below 1.10.0 : `nan_policy` is poorly defined.
The default behavior of `numpy.percentile` is used for 'propagate'. This
is a hybrid of 'omit' and 'propagate' that mostly yields a skewed
version of 'omit' since NaNs are sorted to the end of the data. A
warning is raised if there are NaNs in the data.
Below 1.9.0: `numpy.nanpercentile` does not exist.
This means that `numpy.percentile` is used regardless of `nan_policy`
and a warning is issued. See previous item for a description of the
behavior.
Below 1.9.0: `keepdims` and `interpolation` are not supported.
The keywords get ignored with a warning if supplied with non-default
values. However, multiple axes are still supported.
References
----------
.. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
.. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
.. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
Examples
--------
>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5, 2.5, 1.5])
>>> iqr(x, axis=1)
array([ 3., 1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],
[ 1.]])
"""
x = asarray(x)
# This check prevents percentile from raising an error later. Also, it is
# consistent with `np.var` and `np.std`.
if not x.size:
return np.nan
# An error may be raised here, so fail-fast, before doing lengthy
# computations, even though `scale` is not used until later
if isinstance(scale, str):
scale_key = scale.lower()
if scale_key not in _scale_conversions:
raise ValueError("{0} not a valid scale for `iqr`".format(scale))
if scale_key == 'raw':
warnings.warn(
"use of scale='raw' is deprecated, use scale=1.0 instead",
np.VisibleDeprecationWarning
)
scale = _scale_conversions[scale_key]
# Select the percentile function to use based on nans and policy
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan and nan_policy == 'omit':
percentile_func = np.nanpercentile
else:
percentile_func = np.percentile
if len(rng) != 2:
raise TypeError("quantile range must be two element sequence")
if np.isnan(rng).any():
raise ValueError("range must not contain NaNs")
rng = sorted(rng)
pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
keepdims=keepdims)
out = np.subtract(pct[1], pct[0])
if scale != 1.0:
out /= scale
return out
def _mad_1d(x, center, nan_policy):
# Median absolute deviation for 1-d array x.
# This is a helper function for `median_abs_deviation`; it assumes its
# arguments have been validated already. In particular, x must be a
# 1-d numpy array, center must be callable, and if nan_policy is not
# 'propagate', it is assumed to be 'omit', because 'raise' is handled
# in `median_abs_deviation`.
# No warning is generated if x is empty or all nan.
isnan = np.isnan(x)
if isnan.any():
if nan_policy == 'propagate':
return np.nan
x = x[~isnan]
if x.size == 0:
# MAD of an empty array is nan.
return np.nan
# Edge cases have been handled, so do the basic MAD calculation.
med = center(x)
mad = np.median(np.abs(x - med))
return mad
def median_abs_deviation(x, axis=0, center=np.median, scale=1.0,
nan_policy='propagate'):
r"""
Compute the median absolute deviation of the data along the given axis.
The median absolute deviation (MAD, [1]_) computes the median over the
absolute deviations from the median. It is a measure of dispersion
similar to the standard deviation but more robust to outliers [2]_.
The MAD of an empty array is ``np.nan``.
.. versionadded:: 1.5.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the range is computed. Default is 0. If None, compute
the MAD over the entire array.
center : callable, optional
A function that will return the central value. The default is to use
np.median. Any user defined function used will need to have the
function signature ``func(arr, axis)``.
scale : scalar or str, optional
The numerical value of scale will be divided out of the final
result. The default is 1.0. The string "normal" is also accepted,
and results in `scale` being the inverse of the standard normal
quantile function at 0.75, which is approximately 0.67449.
Array-like scale is also allowed, as long as it broadcasts correctly
to the output such that ``out / scale`` is a valid operation. The
output dimensions depend on the input array, `x`, and the `axis`
argument.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mad : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
scipy.stats.tstd, scipy.stats.tvar
Notes
-----
The `center` argument only affects the calculation of the central value
around which the MAD is calculated. That is, passing in ``center=np.mean``
will calculate the MAD around the mean - it will not calculate the *mean*
absolute deviation.
The input array may contain `inf`, but if `center` returns `inf`, the
corresponding MAD for that data will be `nan`.
References
----------
.. [1] "Median absolute deviation",
https://en.wikipedia.org/wiki/Median_absolute_deviation
.. [2] "Robust measures of scale",
https://en.wikipedia.org/wiki/Robust_measures_of_scale
Examples
--------
When comparing the behavior of `median_abs_deviation` with ``np.std``,
the latter is affected when we change a single value of an array to have an
outlier value while the MAD hardly changes:
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_abs_deviation(x)
0.82832610097857
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_abs_deviation(x)
0.8323442311590675
Axis handling example:
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> stats.median_abs_deviation(x)
array([3.5, 2.5, 1.5])
>>> stats.median_abs_deviation(x, axis=None)
2.0
Scale normal example:
>>> x = stats.norm.rvs(size=1000000, scale=2, random_state=123456)
>>> stats.median_abs_deviation(x)
1.3487398527041636
>>> stats.median_abs_deviation(x, scale='normal')
1.9996446978061115
"""
if not callable(center):
raise TypeError("The argument 'center' must be callable. The given "
f"value {repr(center)} is not callable.")
# An error may be raised here, so fail-fast, before doing lengthy
# computations, even though `scale` is not used until later
if isinstance(scale, str):
if scale.lower() == 'normal':
scale = 0.6744897501960817 # special.ndtri(0.75)
else:
raise ValueError(f"{scale} is not a valid scale value.")
x = asarray(x)
# Consistent with `np.var` and `np.std`.
if not x.size:
if axis is None:
return np.nan
nan_shape = tuple(item for i, item in enumerate(x.shape) if i != axis)
if nan_shape == ():
# Return nan, not array(nan)
return np.nan
return np.full(nan_shape, np.nan)
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan:
if axis is None:
mad = _mad_1d(x.ravel(), center, nan_policy)
else:
mad = np.apply_along_axis(_mad_1d, axis, x, center, nan_policy)
else:
if axis is None:
med = center(x, axis=None)
mad = np.median(np.abs(x - med))
else:
# Wrap the call to center() in expand_dims() so it acts like
# keepdims=True was used.
med = np.expand_dims(center(x, axis=axis), axis)
mad = np.median(np.abs(x - med), axis=axis)
return mad / scale
# Keep the top newline so that the message does not show up on the stats page
_median_absolute_deviation_deprec_msg = """
To preserve the existing default behavior, use
`scipy.stats.median_abs_deviation(..., scale=1/1.4826)`.
The value 1.4826 is not numerically precise for scaling
with a normal distribution. For a numerically precise value, use
`scipy.stats.median_abs_deviation(..., scale='normal')`.
"""
# Due to numpy/gh-16349 we need to unindent the entire docstring
@np.deprecate(old_name='median_absolute_deviation',
new_name='median_abs_deviation',
message=_median_absolute_deviation_deprec_msg)
def median_absolute_deviation(x, axis=0, center=np.median, scale=1.4826,
nan_policy='propagate'):
r"""
Compute the median absolute deviation of the data along the given axis.
The median absolute deviation (MAD, [1]_) computes the median over the
absolute deviations from the median. It is a measure of dispersion
similar to the standard deviation but more robust to outliers [2]_.
The MAD of an empty array is ``np.nan``.
.. versionadded:: 1.3.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the range is computed. Default is 0. If None, compute
the MAD over the entire array.
center : callable, optional
A function that will return the central value. The default is to use
np.median. Any user defined function used will need to have the function
signature ``func(arr, axis)``.
scale : int, optional
The scaling factor applied to the MAD. The default scale (1.4826)
ensures consistency with the standard deviation for normally distributed
data.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mad : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
scipy.stats.tstd, scipy.stats.tvar
Notes
-----
The `center` argument only affects the calculation of the central value
around which the MAD is calculated. That is, passing in ``center=np.mean``
will calculate the MAD around the mean - it will not calculate the *mean*
absolute deviation.
References
----------
.. [1] "Median absolute deviation",
https://en.wikipedia.org/wiki/Median_absolute_deviation
.. [2] "Robust measures of scale",
https://en.wikipedia.org/wiki/Robust_measures_of_scale
Examples
--------
When comparing the behavior of `median_absolute_deviation` with ``np.std``,
the latter is affected when we change a single value of an array to have an
outlier value while the MAD hardly changes:
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_absolute_deviation(x)
1.2280762773108278
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_absolute_deviation(x)
1.2340335571164334
Axis handling example:
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> stats.median_absolute_deviation(x)
array([5.1891, 3.7065, 2.2239])
>>> stats.median_absolute_deviation(x, axis=None)
2.9652
"""
if isinstance(scale, str):
if scale.lower() == 'raw':
warnings.warn(
"use of scale='raw' is deprecated, use scale=1.0 instead",
np.VisibleDeprecationWarning
)
scale = 1.0
if not isinstance(scale, str):
scale = 1 / scale
return median_abs_deviation(x, axis=axis, center=center, scale=scale,
nan_policy=nan_policy)
#####################################
# TRIMMING FUNCTIONS #
#####################################
SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))
def sigmaclip(a, low=4., high=4.):
"""
Perform iterative sigma-clipping of array elements.
Starting from the full sample, all elements outside the critical range are
removed, i.e. all elements of the input array `c` that satisfy either of
the following conditions::
c < mean(c) - std(c)*low
c > mean(c) + std(c)*high
The iteration continues with the updated sample until no
elements are outside the (updated) range.
Parameters
----------
a : array_like
Data array, will be raveled if not 1-D.
low : float, optional
Lower bound factor of sigma clipping. Default is 4.
high : float, optional
Upper bound factor of sigma clipping. Default is 4.
Returns
-------
clipped : ndarray
Input array with clipped elements removed.
lower : float
Lower threshold value use for clipping.
upper : float
Upper threshold value use for clipping.
Examples
--------
>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
... np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
... np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True
"""
c = np.asarray(a).ravel()
delta = 1
while delta:
c_std = c.std()
c_mean = c.mean()
size = c.size
critlower = c_mean - c_std * low
critupper = c_mean + c_std * high
c = c[(c >= critlower) & (c <= critupper)]
delta = size - c.size
return SigmaclipResult(c, critlower, critupper)
def trimboth(a, proportiontocut, axis=0):
"""
Slice off a proportion of items from both ends of an array.
Slice off the passed proportion of items from both ends of the passed
array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
rightmost 10% of scores). The trimmed values are the lowest and
highest ones.
Slice off less if proportion results in a non-integer slice index (i.e.
conservatively slices off `proportiontocut`).
Parameters
----------
a : array_like
Data to trim.
proportiontocut : float
Proportion (in range 0-1) of total data set to trim of each end.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
out : ndarray
Trimmed version of array `a`. The order of the trimmed content
is undefined.
See Also
--------
trim_mean
Examples
--------
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)
"""
a = np.asarray(a)
if a.size == 0:
return a
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut >= uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return atmp[tuple(sl)]
def trim1(a, proportiontocut, tail='right', axis=0):
"""
Slice off a proportion from ONE end of the passed array distribution.
If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
10% of scores. The lowest or highest values are trimmed (depending on
the tail).
Slice off less if proportion results in a non-integer slice index
(i.e. conservatively slices off `proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution.
tail : {'left', 'right'}, optional
Defaults to 'right'.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
trim1 : ndarray
Trimmed version of array `a`. The order of the trimmed content is
undefined.
"""
a = np.asarray(a)
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
# avoid possible corner case
if proportiontocut >= 1:
return []
if tail.lower() == 'right':
lowercut = 0
uppercut = nobs - int(proportiontocut * nobs)
elif tail.lower() == 'left':
lowercut = int(proportiontocut * nobs)
uppercut = nobs
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
return atmp[lowercut:uppercut]
def trim_mean(a, proportiontocut, axis=0):
"""
Return mean of array after trimming distribution from both tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
scores. The input is sorted before slicing. Slices off less if proportion
results in a non-integer slice index (i.e., conservatively slices off
`proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of both tails of the distribution.
axis : int or None, optional
Axis along which the trimmed means are computed. Default is 0.
If None, compute over the whole array `a`.
Returns
-------
trim_mean : ndarray
Mean of trimmed array.
See Also
--------
trimboth
tmean : Compute the trimmed mean ignoring values outside given `limits`.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.trim_mean(x, 0.1)
9.5
>>> x2 = x.reshape(5, 4)
>>> x2
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
>>> stats.trim_mean(x2, 0.25)
array([ 8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([ 1.5, 5.5, 9.5, 13.5, 17.5])
"""
a = np.asarray(a)
if a.size == 0:
return np.nan
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut > uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return np.mean(atmp[tuple(sl)], axis=axis)
F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
class F_onewayConstantInputWarning(RuntimeWarning):
"""
Warning generated by `f_oneway` when an input is constant, e.g.
each of the samples provided is a constant array.
"""
def __init__(self, msg=None):
if msg is None:
msg = ("Each of the input arrays is constant;"
"the F statistic is not defined or infinite")
self.args = (msg,)
class F_onewayBadInputSizesWarning(RuntimeWarning):
"""
Warning generated by `f_oneway` when an input has length 0,
or if all the inputs have length 1.
"""
pass
def _create_f_oneway_nan_result(shape, axis):
"""
This is a helper function for f_oneway for creating the return values
in certain degenerate conditions. It creates return values that are
all nan with the appropriate shape for the given `shape` and `axis`.
"""
axis = np.core.multiarray.normalize_axis_index(axis, len(shape))
shp = shape[:axis] + shape[axis+1:]
if shp == ():
f = np.nan
prob = np.nan
else:
f = np.full(shp, fill_value=np.nan)
prob = f.copy()
return F_onewayResult(f, prob)
def _first(arr, axis):
"""
Return arr[..., 0:1, ...] where 0:1 is in the `axis` position.
"""
# When the oldest version of numpy supported by scipy is at
# least 1.15.0, this function can be replaced by np.take_along_axis
# (with appropriately configured arguments).
axis = np.core.multiarray.normalize_axis_index(axis, arr.ndim)
return arr[tuple(slice(None) if k != axis else slice(0, 1)
for k in range(arr.ndim))]
def f_oneway(*args, axis=0):
"""
Perform one-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have
the same population mean. The test is applied to samples from two or
more groups, possibly with differing sizes.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group. There must be at least
two arguments. If the arrays are multidimensional, then all the
dimensions of the array must be the same except for `axis`.
axis : int, optional
Axis of the input arrays along which the test is applied.
Default is 0.
Returns
-------
statistic : float
The computed F statistic of the test.
pvalue : float
The associated p-value from the F distribution.
Warns
-----
F_onewayConstantInputWarning
Raised if each of the input arrays is constant array.
In this case the F statistic is either infinite or isn't defined,
so ``np.inf`` or ``np.nan`` is returned.
F_onewayBadInputSizesWarning
Raised if the length of any input array is 0, or if all the input
arrays have length 1. ``np.nan`` is returned for the F statistic
and the p-value in these cases.
Notes
-----
The ANOVA test has important assumptions that must be satisfied in order
for the associated p-value to be valid.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This
property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still
be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`)
although with some loss of power.
The length of each group must be at least one, and there must be at
least one group with length greater than one. If these conditions
are not satisfied, a warning is generated and (``np.nan``, ``np.nan``)
is returned.
If each group contains constant values, and there exist at least two
groups with different values, the function generates a warning and
returns (``np.inf``, 0).
If all values in all groups are the same, function generates a warning
and returns (``np.nan``, ``np.nan``).
The algorithm is from Heiman [2]_, pp.394-7.
References
----------
.. [1] R. Lowry, "Concepts and Applications of Inferential Statistics",
Chapter 14, 2014, http://vassarstats.net/textbook/
.. [2] G.W. Heiman, "Understanding research methods and statistics: An
integrated introduction for psychology", Houghton, Mifflin and
Company, 2001.
.. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA.
http://www.biostathandbook.com/onewayanova.html
Examples
--------
>>> from scipy.stats import f_oneway
Here are some data [3]_ on a shell measurement (the length of the anterior
adductor muscle scar, standardized by dividing by length) in the mussel
Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
much larger data set used in McDonald et al. (1991).
>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
>>> f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
F_onewayResult(statistic=7.121019471642447, pvalue=0.0002812242314534544)
`f_oneway` accepts multidimensional input arrays. When the inputs
are multidimensional and `axis` is not given, the test is performed
along the first axis of the input arrays. For the following data, the
test is performed three times, once for each column.
>>> a = np.array([[9.87, 9.03, 6.81],
... [7.18, 8.35, 7.00],
... [8.39, 7.58, 7.68],
... [7.45, 6.33, 9.35],
... [6.41, 7.10, 9.33],
... [8.00, 8.24, 8.44]])
>>> b = np.array([[6.35, 7.30, 7.16],
... [6.65, 6.68, 7.63],
... [5.72, 7.73, 6.72],
... [7.01, 9.19, 7.41],
... [7.75, 7.87, 8.30],
... [6.90, 7.97, 6.97]])
>>> c = np.array([[3.31, 8.77, 1.01],
... [8.25, 3.24, 3.62],
... [6.32, 8.81, 5.19],
... [7.48, 8.83, 8.91],
... [8.59, 6.01, 6.07],
... [3.07, 9.72, 7.48]])
>>> F, p = f_oneway(a, b, c)
>>> F
array([1.75676344, 0.03701228, 3.76439349])
>>> p
array([0.20630784, 0.96375203, 0.04733157])
"""
if len(args) < 2:
raise TypeError(f'at least two inputs are required; got {len(args)}.')
args = [np.asarray(arg, dtype=float) for arg in args]
# ANOVA on N groups, each in its own array
num_groups = len(args)
# We haven't explicitly validated axis, but if it is bad, this call of
# np.concatenate will raise np.AxisError. The call will raise ValueError
# if the dimensions of all the arrays, except the axis dimension, are not
# the same.
alldata = np.concatenate(args, axis=axis)
bign = alldata.shape[axis]
# Check this after forming alldata, so shape errors are detected
# and reported before checking for 0 length inputs.
if any(arg.shape[axis] == 0 for arg in args):
warnings.warn(F_onewayBadInputSizesWarning('at least one input '
'has length 0'))
return _create_f_oneway_nan_result(alldata.shape, axis)
# Must have at least one group with length greater than 1.
if all(arg.shape[axis] == 1 for arg in args):
msg = ('all input arrays have length 1. f_oneway requires that at '
'least one input has length greater than 1.')
warnings.warn(F_onewayBadInputSizesWarning(msg))
return _create_f_oneway_nan_result(alldata.shape, axis)
# Check if the values within each group are constant, and if the common
# value in at least one group is different from that in another group.
# Based on https://github.com/scipy/scipy/issues/11669
# If axis=0, say, and the groups have shape (n0, ...), (n1, ...), ...,
# then is_const is a boolean array with shape (num_groups, ...).
# It is True if the groups along the axis slice are each consant.
# In the typical case where each input array is 1-d, is_const is a
# 1-d array with length num_groups.
is_const = np.concatenate([(_first(a, axis) == a).all(axis=axis,
keepdims=True)
for a in args], axis=axis)
# all_const is a boolean array with shape (...) (see previous comment).
# It is True if the values within each group along the axis slice are
# the same (e.g. [[3, 3, 3], [5, 5, 5, 5], [4, 4, 4]]).
all_const = is_const.all(axis=axis)
if all_const.any():
warnings.warn(F_onewayConstantInputWarning())
# all_same_const is True if all the values in the groups along the axis=0
# slice are the same (e.g. [[3, 3, 3], [3, 3, 3, 3], [3, 3, 3]]).
all_same_const = (_first(alldata, axis) == alldata).all(axis=axis)
# Determine the mean of the data, and subtract that from all inputs to a
# variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariant
# to a shift in location, and centering all data around zero vastly
# improves numerical stability.
offset = alldata.mean(axis=axis, keepdims=True)
alldata -= offset
normalized_ss = _square_of_sums(alldata, axis=axis) / bign
sstot = _sum_of_squares(alldata, axis=axis) - normalized_ss
ssbn = 0
for a in args:
ssbn += _square_of_sums(a - offset, axis=axis) / a.shape[axis]
# Naming: variables ending in bn/b are for "between treatments", wn/w are
# for "within treatments"
ssbn -= normalized_ss
sswn = sstot - ssbn
dfbn = num_groups - 1
dfwn = bign - num_groups
msb = ssbn / dfbn
msw = sswn / dfwn
with np.errstate(divide='ignore', invalid='ignore'):
f = msb / msw
prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf
# Fix any f values that should be inf or nan because the corresponding
# inputs were constant.
if np.isscalar(f):
if all_same_const:
f = np.nan
prob = np.nan
elif all_const:
f = np.inf
prob = 0.0
else:
f[all_const] = np.inf
prob[all_const] = 0.0
f[all_same_const] = np.nan
prob[all_same_const] = np.nan
return F_onewayResult(f, prob)
class PearsonRConstantInputWarning(RuntimeWarning):
"""Warning generated by `pearsonr` when an input is constant."""
def __init__(self, msg=None):
if msg is None:
msg = ("An input array is constant; the correlation coefficent "
"is not defined.")
self.args = (msg,)
class PearsonRNearConstantInputWarning(RuntimeWarning):
"""Warning generated by `pearsonr` when an input is nearly constant."""
def __init__(self, msg=None):
if msg is None:
msg = ("An input array is nearly constant; the computed "
"correlation coefficent may be inaccurate.")
self.args = (msg,)
def pearsonr(x, y):
r"""
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient [1]_ measures the linear relationship
between two datasets. The calculation of the p-value relies on the
assumption that each dataset is normally distributed. (See Kowalski [3]_
for a discussion of the effects of non-normality of the input on the
distribution of the correlation coefficient.) Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear relationship.
Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets.
Parameters
----------
x : (N,) array_like
Input array.
y : (N,) array_like
Input array.
Returns
-------
r : float
Pearson's correlation coefficient.
p-value : float
Two-tailed p-value.
Warns
-----
PearsonRConstantInputWarning
Raised if an input is a constant array. The correlation coefficient
is not defined in this case, so ``np.nan`` is returned.
PearsonRNearConstantInputWarning
Raised if an input is "nearly" constant. The array ``x`` is considered
nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
Numerical errors in the calculation ``x - mean(x)`` in this case might
result in an inaccurate calculation of r.
See Also
--------
spearmanr : Spearman rank-order correlation coefficient.
kendalltau : Kendall's tau, a correlation measure for ordinal data.
Notes
-----
The correlation coefficient is calculated as follows:
.. math::
r = \frac{\sum (x - m_x) (y - m_y)}
{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
where :math:`m_x` is the mean of the vector :math:`x` and :math:`m_y` is
the mean of the vector :math:`y`.
Under the assumption that x and y are drawn from independent normal
distributions (so the population correlation coefficient is 0), the
probability density function of the sample correlation coefficient r
is ([1]_, [2]_)::
(1 - r**2)**(n/2 - 2)
f(r) = ---------------------
B(1/2, n/2 - 1)
where n is the number of samples, and B is the beta function. This
is sometimes referred to as the exact distribution of r. This is
the distribution that is used in `pearsonr` to compute the p-value.
The distribution is a beta distribution on the interval [-1, 1],
with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
implementation of the beta distribution, the distribution of r is::
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
The p-value returned by `pearsonr` is a two-sided p-value. For a
given sample with correlation coefficient r, the p-value is
the probability that abs(r') of a random sample x' and y' drawn from
the population with zero correlation would be greater than or equal
to abs(r). In terms of the object ``dist`` shown above, the p-value
for a given r and length n can be computed as::
p = 2*dist.cdf(-abs(r))
When n is 2, the above continuous distribution is not well-defined.
One can interpret the limit of the beta distribution as the shape
parameters a and b approach a = b = 0 as a discrete distribution with
equal probability masses at r = 1 and r = -1. More directly, one
can observe that, given the data x = [x1, x2] and y = [y1, y2], and
assuming x1 != x2 and y1 != y2, the only possible values for r are 1
and -1. Because abs(r') for any sample x' and y' with length 2 will
be 1, the two-sided p-value for a sample of length 2 is always 1.
References
----------
.. [1] "Pearson correlation coefficient", Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
.. [2] Student, "Probable error of a correlation coefficient",
Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
.. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
of the Sample Product-Moment Correlation Coefficient"
Journal of the Royal Statistical Society. Series C (Applied
Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pearsonr(a, b)
(0.8660254037844386, 0.011724811003954649)
>>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)
"""
n = len(x)
if n != len(y):
raise ValueError('x and y must have the same length.')
if n < 2:
raise ValueError('x and y must have length at least 2.')
x = np.asarray(x)
y = np.asarray(y)
# If an input is constant, the correlation coefficient is not defined.
if (x == x[0]).all() or (y == y[0]).all():
warnings.warn(PearsonRConstantInputWarning())
return np.nan, np.nan
# dtype is the data type for the calculations. This expression ensures
# that the data type is at least 64 bit floating point. It might have
# more precision if the input is, for example, np.longdouble.
dtype = type(1.0 + x[0] + y[0])
if n == 2:
return dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0])), 1.0
xmean = x.mean(dtype=dtype)
ymean = y.mean(dtype=dtype)
# By using `astype(dtype)`, we ensure that the intermediate calculations
# use at least 64 bit floating point.
xm = x.astype(dtype) - xmean
ym = y.astype(dtype) - ymean
# Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()),
# scipy.linalg.norm(xm) does not overflow if xm is, for example,
# [-5e210, 5e210, 3e200, -3e200]
normxm = linalg.norm(xm)
normym = linalg.norm(ym)
threshold = 1e-13
if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean):
# If all the values in x (likewise y) are very close to the mean,
# the loss of precision that occurs in the subtraction xm = x - xmean
# might result in large errors in r.
warnings.warn(PearsonRNearConstantInputWarning())
r = np.dot(xm/normxm, ym/normym)
# Presumably, if abs(r) > 1, then it is only some small artifact of
# floating point arithmetic.
r = max(min(r, 1.0), -1.0)
# As explained in the docstring, the p-value can be computed as
# p = 2*dist.cdf(-abs(r))
# where dist is the beta distribution on [-1, 1] with shape parameters
# a = b = n/2 - 1. `special.btdtr` is the CDF for the beta distribution
# on [0, 1]. To use it, we make the transformation x = (r + 1)/2; the
# shape parameters do not change. Then -abs(r) used in `cdf(-abs(r))`
# becomes x = (-abs(r) + 1)/2 = 0.5*(1 - abs(r)). (r is cast to float64
# to avoid a TypeError raised by btdtr when r is higher precision.)
ab = n/2 - 1
prob = 2*special.btdtr(ab, ab, 0.5*(1 - abs(np.float64(r))))
return r, prob
def fisher_exact(table, alternative='two-sided'):
"""
Perform a Fisher exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
Returns
-------
oddsratio : float
This is prior odds ratio and not a posterior estimate.
p_value : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
Notes
-----
The calculated odds ratio is different from the one R uses. This scipy
implementation returns the (more common) "unconditional Maximum
Likelihood Estimate", while R uses the "conditional Maximum Likelihood
Estimate".
For tables with large numbers, the (inexact) chi-square test implemented
in the function `chi2_contingency` can also be used.
Examples
--------
Say we spend a few days counting whales and sharks in the Atlantic and
Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
Indian ocean 2 whales and 5 sharks. Then our contingency table is::
Atlantic Indian
whales 8 2
sharks 1 5
We use this table to find the p-value:
>>> import scipy.stats as stats
>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...
The probability that we would observe this or an even more imbalanced ratio
by chance is about 3.5%. A commonly used significance level is 5%--if we
adopt that, we can therefore conclude that our observed imbalance is
statistically significant; whales prefer the Atlantic while sharks prefer
the Indian ocean.
"""
hypergeom = distributions.hypergeom
c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm
if not c.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(c < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
# If both values in a row or column are zero, the p-value is 1 and
# the odds ratio is NaN.
return np.nan, 1.0
if c[1, 0] > 0 and c[0, 1] > 0:
oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1])
else:
oddsratio = np.inf
n1 = c[0, 0] + c[0, 1]
n2 = c[1, 0] + c[1, 1]
n = c[0, 0] + c[1, 0]
def binary_search(n, n1, n2, side):
"""Binary search for where to begin halves in two-sided test."""
if side == "upper":
minval = mode
maxval = n
else:
minval = 0
maxval = mode
guess = -1
while maxval - minval > 1:
if maxval == minval + 1 and guess == minval:
guess = maxval
else:
guess = (maxval + minval) // 2
pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
if side == "upper":
ng = guess - 1
else:
ng = guess + 1
if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n):
break
elif pguess < pexact:
maxval = guess
else:
minval = guess
if guess == -1:
guess = minval
if side == "upper":
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess -= 1
while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess += 1
else:
while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess += 1
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess -= 1
return guess
if alternative == 'less':
pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
elif alternative == 'greater':
# Same formula as the 'less' case, but with the second column.
pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1])
elif alternative == 'two-sided':
mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2))
pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n)
pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
epsilon = 1 - 1e-4
if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon:
return oddsratio, 1.
elif c[0, 0] < mode:
plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, plower
guess = binary_search(n, n1, n2, "upper")
pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
else:
pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n)
if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, pupper
guess = binary_search(n, n1, n2, "lower")
pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
else:
msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
raise ValueError(msg)
pvalue = min(pvalue, 1.0)
return oddsratio, pvalue
class SpearmanRConstantInputWarning(RuntimeWarning):
"""Warning generated by `spearmanr` when an input is constant."""
def __init__(self, msg=None):
if msg is None:
msg = ("An input array is constant; the correlation coefficent "
"is not defined.")
self.args = (msg,)
SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue'))
def spearmanr(a, b=None, axis=0, nan_policy='propagate'):
"""
Calculate a Spearman correlation coefficient with associated p-value.
The Spearman rank-order correlation coefficient is a nonparametric measure
of the monotonicity of the relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both
datasets are normally distributed. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply an exact monotonic relationship. Positive
correlations imply that as x increases, so does y. Negative correlations
imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
a, b : 1D or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and
observations. When these are 1-D, each represents a vector of
observations of a single variable. For the behavior in the 2-D case,
see under ``axis``, below.
Both arrays need to have the same length in the ``axis`` dimension.
axis : int or None, optional
If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed:
each row represents a variable, while the columns contain observations.
If axis=None, then both arrays will be raveled.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
correlation : float or ndarray (2-D square)
Spearman correlation matrix or correlation coefficient (if only 2
variables are given as parameters. Correlation matrix is square with
length equal to total number of variables (columns or rows) in ``a``
and ``b`` combined.
pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is
that two sets of data are uncorrelated, has same dimension as rho.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 14.7
Examples
--------
>>> from scipy import stats
>>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n = np.random.randn(100, 2)
>>> y2n = np.random.randn(100, 2)
>>> stats.spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> stats.spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = stats.spearmanr(x2n, y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],
[ 0.55338591, 0. , 0.27592895, 0.80234077],
[ 0.06435364, 0.27592895, 0. , 0.73039992],
[ 0.53617935, 0.80234077, 0.73039992, 0. ]])
>>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> stats.spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> stats.spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)
>>> xint = np.random.randint(10, size=(100, 2))
>>> stats.spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)
"""
if axis is not None and axis > 1:
raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, please use only values 0, 1 or None for axis".format(axis))
a, axisout = _chk_asarray(a, axis)
if a.ndim > 2:
raise ValueError("spearmanr only handles 1-D or 2-D arrays")
if b is None:
if a.ndim < 2:
raise ValueError("`spearmanr` needs at least 2 variables to compare")
else:
# Concatenate a and b, so that we now only have to handle the case
# of a 2-D `a`.
b, _ = _chk_asarray(b, axis)
if axisout == 0:
a = np.column_stack((a, b))
else:
a = np.row_stack((a, b))
n_vars = a.shape[1 - axisout]
n_obs = a.shape[axisout]
if n_obs <= 1:
# Handle empty arrays or single observations.
return SpearmanrResult(np.nan, np.nan)
if axisout == 0:
if (a[:, 0][0] == a[:, 0]).all() or (a[:, 1][0] == a[:, 1]).all():
# If an input is constant, the correlation coefficient is not defined.
warnings.warn(SpearmanRConstantInputWarning())
return SpearmanrResult(np.nan, np.nan)
else: # case when axisout == 1 b/c a is 2 dim only
if (a[0, :][0] == a[0, :]).all() or (a[1, :][0] == a[1, :]).all():
# If an input is constant, the correlation coefficient is not defined.
warnings.warn(SpearmanRConstantInputWarning())
return SpearmanrResult(np.nan, np.nan)
a_contains_nan, nan_policy = _contains_nan(a, nan_policy)
variable_has_nan = np.zeros(n_vars, dtype=bool)
if a_contains_nan:
if nan_policy == 'omit':
return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy)
elif nan_policy == 'propagate':
if a.ndim == 1 or n_vars <= 2:
return SpearmanrResult(np.nan, np.nan)
else:
# Keep track of variables with NaNs, set the outputs to NaN
# only for those variables
variable_has_nan = np.isnan(a).sum(axis=axisout)
a_ranked = np.apply_along_axis(rankdata, axisout, a)
rs = np.corrcoef(a_ranked, rowvar=axisout)
dof = n_obs - 2 # degrees of freedom
# rs can have elements equal to 1, so avoid zero division warnings
with np.errstate(divide='ignore'):
# clip the small negative values possibly caused by rounding
# errors before taking the square root
t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0))
prob = 2 * distributions.t.sf(np.abs(t), dof)
# For backwards compatibility, return scalars when comparing 2 columns
if rs.shape == (2, 2):
return SpearmanrResult(rs[1, 0], prob[1, 0])
else:
rs[variable_has_nan, :] = np.nan
rs[:, variable_has_nan] = np.nan
return SpearmanrResult(rs, prob)
PointbiserialrResult = namedtuple('PointbiserialrResult',
('correlation', 'pvalue'))
def pointbiserialr(x, y):
r"""
Calculate a point biserial correlation coefficient and its p-value.
The point biserial correlation is used to measure the relationship
between a binary variable, x, and a continuous variable, y. Like other
correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative
relationship.
This function uses a shortcut formula but produces the same result as
`pearsonr`.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
correlation : float
R value.
pvalue : float
Two-sided p-value.
Notes
-----
`pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
It is equivalent to `pearsonr.`
The value of the point-biserial correlation can be calculated from:
.. math::
r_{pb} = \frac{\overline{Y_{1}} -
\overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}}
Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric
observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}`
are number of observations coded 0 and 1 respectively; :math:`N` is the
total number of observations and :math:`s_{y}` is the standard
deviation of all the metric observations.
A value of :math:`r_{pb}` that is significantly different from zero is
completely equivalent to a significant difference in means between the two
groups. Thus, an independent groups t Test with :math:`N-2` degrees of
freedom may be used to test whether :math:`r_{pb}` is nonzero. The
relation between the t-statistic for comparing two independent groups and
:math:`r_{pb}` is given by:
.. math::
t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}
References
----------
.. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
Statist., Vol. 20, no.1, pp. 125-126, 1949.
.. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
np. 3, pp. 603-607, 1954.
.. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef:
Statistics Reference Online (eds N. Balakrishnan, et al.), 2014.
https://doi.org/10.1002/9781118445112.stat06227
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],
[ 0.8660254, 1. ]])
"""
rpb, prob = pearsonr(x, y)
return PointbiserialrResult(rpb, prob)
KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue'))
def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto'):
"""
Calculate Kendall's tau, a correlation measure for ordinal data.
Kendall's tau is a measure of the correspondence between two rankings.
Values close to 1 indicate strong agreement, values close to -1 indicate
strong disagreement. This is the 1945 "tau-b" version of Kendall's
tau [2]_, which can account for ties and which reduces to the 1938 "tau-a"
version [1]_ in absence of ties.
Parameters
----------
x, y : array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
initial_lexsort : bool, optional
Unused (deprecated).
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
method : {'auto', 'asymptotic', 'exact'}, optional
Defines which method is used to calculate the p-value [5]_.
The following options are available (default is 'auto'):
* 'auto': selects the appropriate method based on a trade-off between
speed and accuracy
* 'asymptotic': uses a normal approximation valid for large samples
* 'exact': computes the exact p-value, but can only be used if no ties
are present
Returns
-------
correlation : float
The tau statistic.
pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is
an absence of association, tau = 0.
See Also
--------
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
weightedtau : Computes a weighted version of Kendall's tau.
Notes
-----
The definition of Kendall's tau that is used is [2]_::
tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
where P is the number of concordant pairs, Q the number of discordant
pairs, T the number of ties only in `x`, and U the number of ties only in
`y`. If a tie occurs for the same pair in both `x` and `y`, it is not
added to either T or U.
References
----------
.. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika
Vol. 30, No. 1/2, pp. 81-93, 1938.
.. [2] Maurice G. Kendall, "The treatment of ties in ranking problems",
Biometrika Vol. 33, No. 3, pp. 239-251. 1945.
.. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John
Wiley & Sons, 1967.
.. [4] Peter M. Fenwick, "A new data structure for cumulative frequency
tables", Software: Practice and Experience, Vol. 24, No. 3,
pp. 327-336, 1994.
.. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
Charles Griffin & Co., 1970.
Examples
--------
>>> from scipy import stats
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.2827454599327748
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `kendalltau` must be of the same size, "
"found x-size %s and y-size %s" % (x.size, y.size))
elif not x.size or not y.size:
return KendalltauResult(np.nan, np.nan) # Return NaN if arrays are empty
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == 'omit' or npy == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'propagate':
return KendalltauResult(np.nan, np.nan)
elif contains_nan and nan_policy == 'omit':
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
return mstats_basic.kendalltau(x, y, method=method)
if initial_lexsort is not None: # deprecate to drop!
warnings.warn('"initial_lexsort" is gone!')
def count_rank_tie(ranks):
cnt = np.bincount(ranks).astype('int64', copy=False)
cnt = cnt[cnt > 1]
return ((cnt * (cnt - 1) // 2).sum(),
(cnt * (cnt - 1.) * (cnt - 2)).sum(),
(cnt * (cnt - 1.) * (2*cnt + 5)).sum())
size = x.size
perm = np.argsort(y) # sort on y and convert y to dense ranks
x, y = x[perm], y[perm]
y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)
# stable sort on x and convert x to dense ranks
perm = np.argsort(x, kind='mergesort')
x, y = x[perm], y[perm]
x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)
dis = _kendall_dis(x, y) # discordant pairs
obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False)
ntie = (cnt * (cnt - 1) // 2).sum() # joint ties
xtie, x0, x1 = count_rank_tie(x) # ties in x, stats
ytie, y0, y1 = count_rank_tie(y) # ties in y, stats
tot = (size * (size - 1)) // 2
if xtie == tot or ytie == tot:
return KendalltauResult(np.nan, np.nan)
# Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
# = con + dis + xtie + ytie - ntie
con_minus_dis = tot - xtie - ytie + ntie - 2 * dis
tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie)
# Limit range to fix computational errors
tau = min(1., max(-1., tau))
if method == 'exact' and (xtie != 0 or ytie != 0):
raise ValueError("Ties found, exact method cannot be used.")
if method == 'auto':
if (xtie == 0 and ytie == 0) and (size <= 33 or min(dis, tot-dis) <= 1):
method = 'exact'
else:
method = 'asymptotic'
if xtie == 0 and ytie == 0 and method == 'exact':
# Exact p-value, see p. 68 of Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), Charles Griffin & Co., 1970.
c = min(dis, tot-dis)
if size <= 0:
raise ValueError
elif c < 0 or 2*c > size*(size-1):
raise ValueError
elif size == 1:
pvalue = 1.0
elif size == 2:
pvalue = 1.0
elif c == 0:
pvalue = 2.0/float_factorial(size)
elif c == 1:
pvalue = 2.0/float_factorial(size-1)
elif 2*c == tot:
pvalue = 1.0
else:
new = [0.0]*(c+1)
new[0] = 1.0
new[1] = 1.0
for j in range(3,size+1):
old = new[:]
for k in range(1,min(j,c+1)):
new[k] += new[k-1]
for k in range(j,c+1):
new[k] += new[k-1] - old[k-j]
pvalue = 2.0*sum(new)/float_factorial(size)
elif method == 'asymptotic':
# con_minus_dis is approx normally distributed with this variance [3]_
var = (size * (size - 1) * (2.*size + 5) - x1 - y1) / 18. + (
2. * xtie * ytie) / (size * (size - 1)) + x0 * y0 / (9. *
size * (size - 1) * (size - 2))
pvalue = special.erfc(np.abs(con_minus_dis) / np.sqrt(var) / np.sqrt(2))
else:
raise ValueError("Unknown method "+str(method)+" specified, please use auto, exact or asymptotic.")
return KendalltauResult(tau, pvalue)
WeightedTauResult = namedtuple('WeightedTauResult', ('correlation', 'pvalue'))
def weightedtau(x, y, rank=True, weigher=None, additive=True):
r"""
Compute a weighted version of Kendall's :math:`\tau`.
The weighted :math:`\tau` is a weighted version of Kendall's
:math:`\tau` in which exchanges of high weight are more influential than
exchanges of low weight. The default parameters compute the additive
hyperbolic version of the index, :math:`\tau_\mathrm h`, which has
been shown to provide the best balance between important and
unimportant elements [1]_.
The weighting is defined by means of a rank array, which assigns a
nonnegative rank to each element, and a weigher function, which
assigns a weight based from the rank to each element. The weight of an
exchange is then the sum or the product of the weights of the ranks of
the exchanged elements. The default parameters compute
:math:`\tau_\mathrm h`: an exchange between elements with rank
:math:`r` and :math:`s` (starting from zero) has weight
:math:`1/(r+1) + 1/(s+1)`.
Specifying a rank array is meaningful only if you have in mind an
external criterion of importance. If, as it usually happens, you do
not have in mind a specific rank, the weighted :math:`\tau` is
defined by averaging the values obtained using the decreasing
lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the
behavior with default parameters.
Note that if you are computing the weighted :math:`\tau` on arrays of
ranks, rather than of scores (i.e., a larger value implies a lower
rank) you must negate the ranks, so that elements of higher rank are
associated with a larger value.
Parameters
----------
x, y : array_like
Arrays of scores, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
rank : array_like of ints or bool, optional
A nonnegative rank assigned to each element. If it is None, the
decreasing lexicographical rank by (`x`, `y`) will be used: elements of
higher rank will be those with larger `x`-values, using `y`-values to
break ties (in particular, swapping `x` and `y` will give a different
result). If it is False, the element indices will be used
directly as ranks. The default is True, in which case this
function returns the average of the values obtained using the
decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`).
weigher : callable, optional
The weigher function. Must map nonnegative integers (zero
representing the most important element) to a nonnegative weight.
The default, None, provides hyperbolic weighing, that is,
rank :math:`r` is mapped to weight :math:`1/(r+1)`.
additive : bool, optional
If True, the weight of an exchange is computed by adding the
weights of the ranks of the exchanged elements; otherwise, the weights
are multiplied. The default is True.
Returns
-------
correlation : float
The weighted :math:`\tau` correlation index.
pvalue : float
Presently ``np.nan``, as the null statistics is unknown (even in the
additive hyperbolic case).
See Also
--------
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
Notes
-----
This function uses an :math:`O(n \log n)`, mergesort-based algorithm
[1]_ that is a weighted extension of Knight's algorithm for Kendall's
:math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_
between rankings without ties (i.e., permutations) by setting
`additive` and `rank` to False, as the definition given in [1]_ is a
generalization of Shieh's.
NaNs are considered the smallest possible score.
.. versionadded:: 0.19.0
References
----------
.. [1] Sebastiano Vigna, "A weighted correlation index for rankings with
ties", Proceedings of the 24th international conference on World
Wide Web, pp. 1166-1176, ACM, 2015.
.. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
Ungrouped Data", Journal of the American Statistical Association,
Vol. 61, No. 314, Part 1, pp. 436-439, 1966.
.. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics &
Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998.
Examples
--------
>>> from scipy import stats
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
>>> p_value
nan
>>> tau, p_value = stats.weightedtau(x, y, additive=False)
>>> tau
-0.62205716951801038
NaNs are considered the smallest possible score:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, np.nan]
>>> tau, _ = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
This is exactly Kendall's tau:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1)
>>> tau
-0.47140452079103173
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> stats.weightedtau(x, y, rank=None)
WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan)
>>> stats.weightedtau(y, x, rank=None)
WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan)
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `weightedtau` must be of the same size, "
"found x-size %s and y-size %s" % (x.size, y.size))
if not x.size:
return WeightedTauResult(np.nan, np.nan) # Return NaN if arrays are empty
# If there are NaNs we apply _toint64()
if np.isnan(np.sum(x)):
x = _toint64(x)
if np.isnan(np.sum(x)):
y = _toint64(y)
# Reduce to ranks unsupported types
if x.dtype != y.dtype:
if x.dtype != np.int64:
x = _toint64(x)
if y.dtype != np.int64:
y = _toint64(y)
else:
if x.dtype not in (np.int32, np.int64, np.float32, np.float64):
x = _toint64(x)
y = _toint64(y)
if rank is True:
return WeightedTauResult((
_weightedrankedtau(x, y, None, weigher, additive) +
_weightedrankedtau(y, x, None, weigher, additive)
) / 2, np.nan)
if rank is False:
rank = np.arange(x.size, dtype=np.intp)
elif rank is not None:
rank = np.asarray(rank).ravel()
if rank.size != x.size:
raise ValueError("All inputs to `weightedtau` must be of the same size, "
"found x-size %s and rank-size %s" % (x.size, rank.size))
return WeightedTauResult(_weightedrankedtau(x, y, rank, weigher, additive), np.nan)
# FROM MGCPY: https://github.com/neurodata/mgcpy
class _ParallelP(object):
"""
Helper function to calculate parallel p-value.
"""
def __init__(self, x, y, random_states):
self.x = x
self.y = y
self.random_states = random_states
def __call__(self, index):
order = self.random_states[index].permutation(self.y.shape[0])
permy = self.y[order][:, order]
# calculate permuted stats, store in null distribution
perm_stat = _mgc_stat(self.x, permy)[0]
return perm_stat
def _perm_test(x, y, stat, reps=1000, workers=-1, random_state=None):
r"""
Helper function that calculates the p-value. See below for uses.
Parameters
----------
x, y : ndarray
`x` and `y` have shapes `(n, p)` and `(n, q)`.
stat : float
The sample test statistic.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is 1000 replications.
workers : int or map-like callable, optional
If `workers` is an int the population is subdivided into `workers`
sections and evaluated in parallel (uses
`multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores
available to the Process. Alternatively supply a map-like callable,
such as `multiprocessing.Pool.map` for evaluating the population in
parallel. This evaluation is carried out as `workers(func, iterable)`.
Requires that `func` be pickleable.
random_state : int or np.random.RandomState instance, optional
If already a RandomState instance, use it.
If seed is an int, return a new RandomState instance seeded with seed.
If None, use np.random.RandomState. Default is None.
Returns
-------
pvalue : float
The sample test p-value.
null_dist : list
The approximated null distribution.
"""
# generate seeds for each rep (change to new parallel random number
# capabilities in numpy >= 1.17+)
random_state = check_random_state(random_state)
random_states = [np.random.RandomState(rng_integers(random_state, 1 << 32,
size=4, dtype=np.uint32)) for _ in range(reps)]
# parallelizes with specified workers over number of reps and set seeds
mapwrapper = MapWrapper(workers)
parallelp = _ParallelP(x=x, y=y, random_states=random_states)
null_dist = np.array(list(mapwrapper(parallelp, range(reps))))
# calculate p-value and significant permutation map through list
pvalue = (null_dist >= stat).sum() / reps
# correct for a p-value of 0. This is because, with bootstrapping
# permutations, a p-value of 0 is incorrect
if pvalue == 0:
pvalue = 1 / reps
return pvalue, null_dist
def _euclidean_dist(x):
return cdist(x, x)
MGCResult = namedtuple('MGCResult', ('stat', 'pvalue', 'mgc_dict'))
def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000,
workers=1, is_twosamp=False, random_state=None):
r"""
Computes the Multiscale Graph Correlation (MGC) test statistic.
Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for
one property (e.g. cloud density), and the :math:`l`-nearest neighbors for
the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is
called the "scale". A priori, however, it is not know which scales will be
most informative. So, MGC computes all distance pairs, and then efficiently
computes the distance correlations for all scales. The local correlations
illustrate which scales are relatively informative about the relationship.
The key, therefore, to successfully discover and decipher relationships
between disparate data modalities is to adaptively determine which scales
are the most informative, and the geometric implication for the most
informative scales. Doing so not only provides an estimate of whether the
modalities are related, but also provides insight into how the
determination was made. This is especially important in high-dimensional
data, where simple visualizations do not reveal relationships to the
unaided human eye. Characterizations of this implementation in particular
have been derived from and benchmarked within in [2]_.
Parameters
----------
x, y : ndarray
If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is
the number of samples and `p` and `q` are the number of dimensions,
then the MGC independence test will be run. Alternatively, ``x`` and
``y`` can have shapes ``(n, n)`` if they are distance or similarity
matrices, and ``compute_distance`` must be sent to ``None``. If ``x``
and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired
two-sample MGC test will be run.
compute_distance : callable, optional
A function that computes the distance or similarity among the samples
within each data matrix. Set to ``None`` if ``x`` and ``y`` are
already distance matrices. The default uses the euclidean norm metric.
If you are calling a custom function, either create the distance
matrix before-hand or create a function of the form
``compute_distance(x)`` where `x` is the data matrix for which
pairwise distances are calculated.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is ``1000``.
workers : int or map-like callable, optional
If ``workers`` is an int the population is subdivided into ``workers``
sections and evaluated in parallel (uses ``multiprocessing.Pool
<multiprocessing>``). Supply ``-1`` to use all cores available to the
Process. Alternatively supply a map-like callable, such as
``multiprocessing.Pool.map`` for evaluating the p-value in parallel.
This evaluation is carried out as ``workers(func, iterable)``.
Requires that `func` be pickleable. The default is ``1``.
is_twosamp : bool, optional
If `True`, a two sample test will be run. If ``x`` and ``y`` have
shapes ``(n, p)`` and ``(m, p)``, this optional will be overriden and
set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes
``(n, p)`` and a two sample test is desired. The default is ``False``.
Note that this will not run if inputs are distance matrices.
random_state : int or np.random.RandomState instance, optional
If already a RandomState instance, use it.
If seed is an int, return a new RandomState instance seeded with seed.
If None, use np.random.RandomState. Default is None.
Returns
-------
stat : float
The sample MGC test statistic within `[-1, 1]`.
pvalue : float
The p-value obtained via permutation.
mgc_dict : dict
Contains additional useful additional returns containing the following
keys:
- mgc_map : ndarray
A 2D representation of the latent geometry of the relationship.
of the relationship.
- opt_scale : (int, int)
The estimated optimal scale as a `(x, y)` pair.
- null_dist : list
The null distribution derived from the permuted matrices
See Also
--------
pearsonr : Pearson correlation coefficient and p-value for testing
non-correlation.
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
Notes
-----
A description of the process of MGC and applications on neuroscience data
can be found in [1]_. It is performed using the following steps:
#. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and
modified to be mean zero columnwise. This results in two
:math:`n \times n` distance matrices :math:`A` and :math:`B` (the
centering and unbiased modification) [3]_.
#. For all values :math:`k` and :math:`l` from :math:`1, ..., n`,
* The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs
are calculated for each property. Here, :math:`G_k (i, j)` indicates
the :math:`k`-smallest values of the :math:`i`-th row of :math:`A`
and :math:`H_l (i, j)` indicates the :math:`l` smallested values of
the :math:`i`-th row of :math:`B`
* Let :math:`\circ` denotes the entry-wise matrix product, then local
correlations are summed and normalized using the following statistic:
.. math::
c^{kl} = \frac{\sum_{ij} A G_k B H_l}
{\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}
#. The MGC test statistic is the smoothed optimal local correlation of
:math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)`
(which essentially set all isolated large correlations) as 0 and
connected large correlations the same as before, see [3]_.) MGC is,
.. math::
MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right)
\right)
The test statistic returns a value between :math:`(-1, 1)` since it is
normalized.
The p-value returned is calculated using a permutation test. This process
is completed by first randomly permuting :math:`y` to estimate the null
distribution and then calculating the probability of observing a test
statistic, under the null, at least as extreme as the observed test
statistic.
MGC requires at least 5 samples to run with reliable results. It can also
handle high-dimensional data sets.
In addition, by manipulating the input data matrices, the two-sample
testing problem can be reduced to the independence testing problem [4]_.
Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n`
:math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as
follows:
.. math::
X = [U | V] \in \mathcal{R}^{p \times (n + m)}
Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)}
Then, the MGC statistic can be calculated as normal. This methodology can
be extended to similar tests such as distance correlation [4]_.
.. versionadded:: 1.4.0
References
----------
.. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E.,
Maggioni, M., & Shen, C. (2019). Discovering and deciphering
relationships across disparate data modalities. ELife.
.. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A.,
Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019).
mgcpy: A Comprehensive High Dimensional Independence Testing Python
Package. ArXiv:1907.02088 [Cs, Stat].
.. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance
correlation to multiscale graph correlation. Journal of the American
Statistical Association.
.. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of
Distance and Kernel Methods for Hypothesis Testing. ArXiv:1806.05514
[Cs, Stat].
Examples
--------
>>> from scipy.stats import multiscale_graphcorr
>>> x = np.arange(100)
>>> y = x
>>> stat, pvalue, _ = multiscale_graphcorr(x, y, workers=-1)
>>> '%.1f, %.3f' % (stat, pvalue)
'1.0, 0.001'
Alternatively,
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y)
>>> '%.1f, %.3f' % (mgc.stat, mgc.pvalue)
'1.0, 0.001'
To run an unpaired two-sample test,
>>> x = np.arange(100)
>>> y = np.arange(79)
>>> mgc = multiscale_graphcorr(x, y, random_state=1)
>>> '%.3f, %.2f' % (mgc.stat, mgc.pvalue)
'0.033, 0.02'
or, if shape of the inputs are the same,
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y, is_twosamp=True)
>>> '%.3f, %.1f' % (mgc.stat, mgc.pvalue)
'-0.008, 1.0'
"""
if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
raise ValueError("x and y must be ndarrays")
# convert arrays of type (n,) to (n, 1)
if x.ndim == 1:
x = x[:, np.newaxis]
elif x.ndim != 2:
raise ValueError("Expected a 2-D array `x`, found shape "
"{}".format(x.shape))
if y.ndim == 1:
y = y[:, np.newaxis]
elif y.ndim != 2:
raise ValueError("Expected a 2-D array `y`, found shape "
"{}".format(y.shape))
nx, px = x.shape
ny, py = y.shape
# check for NaNs
_contains_nan(x, nan_policy='raise')
_contains_nan(y, nan_policy='raise')
# check for positive or negative infinity and raise error
if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0:
raise ValueError("Inputs contain infinities")
if nx != ny:
if px == py:
# reshape x and y for two sample testing
is_twosamp = True
else:
raise ValueError("Shape mismatch, x and y must have shape [n, p] "
"and [n, q] or have shape [n, p] and [m, p].")
if nx < 5 or ny < 5:
raise ValueError("MGC requires at least 5 samples to give reasonable "
"results.")
# convert x and y to float
x = x.astype(np.float64)
y = y.astype(np.float64)
# check if compute_distance_matrix if a callable()
if not callable(compute_distance) and compute_distance is not None:
raise ValueError("Compute_distance must be a function.")
# check if number of reps exists, integer, or > 0 (if under 1000 raises
# warning)
if not isinstance(reps, int) or reps < 0:
raise ValueError("Number of reps must be an integer greater than 0.")
elif reps < 1000:
msg = ("The number of replications is low (under 1000), and p-value "
"calculations may be unreliable. Use the p-value result, with "
"caution!")
warnings.warn(msg, RuntimeWarning)
if is_twosamp:
if compute_distance is None:
raise ValueError("Cannot run if inputs are distance matrices")
x, y = _two_sample_transform(x, y)
if compute_distance is not None:
# compute distance matrices for x and y
x = compute_distance(x)
y = compute_distance(y)
# calculate MGC stat
stat, stat_dict = _mgc_stat(x, y)
stat_mgc_map = stat_dict["stat_mgc_map"]
opt_scale = stat_dict["opt_scale"]
# calculate permutation MGC p-value
pvalue, null_dist = _perm_test(x, y, stat, reps=reps, workers=workers,
random_state=random_state)
# save all stats (other than stat/p-value) in dictionary
mgc_dict = {"mgc_map": stat_mgc_map,
"opt_scale": opt_scale,
"null_dist": null_dist}
return MGCResult(stat, pvalue, mgc_dict)
def _mgc_stat(distx, disty):
r"""
Helper function that calculates the MGC stat. See above for use.
Parameters
----------
x, y : ndarray
`x` and `y` have shapes `(n, p)` and `(n, q)` or `(n, n)` and `(n, n)`
if distance matrices.
Returns
-------
stat : float
The sample MGC test statistic within `[-1, 1]`.
stat_dict : dict
Contains additional useful additional returns containing the following
keys:
- stat_mgc_map : ndarray
MGC-map of the statistics.
- opt_scale : (float, float)
The estimated optimal scale as a `(x, y)` pair.
"""
# calculate MGC map and optimal scale
stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc')
n, m = stat_mgc_map.shape
if m == 1 or n == 1:
# the global scale at is the statistic calculated at maximial nearest
# neighbors. There is not enough local scale to search over, so
# default to global scale
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = m * n
else:
samp_size = len(distx) - 1
# threshold to find connected region of significant local correlations
sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size)
# maximum within the significant region
stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map)
stat_dict = {"stat_mgc_map": stat_mgc_map,
"opt_scale": opt_scale}
return stat, stat_dict
def _threshold_mgc_map(stat_mgc_map, samp_size):
r"""
Finds a connected region of significance in the MGC-map by thresholding.
Parameters
----------
stat_mgc_map : ndarray
All local correlations within `[-1,1]`.
samp_size : int
The sample size of original data.
Returns
-------
sig_connect : ndarray
A binary matrix with 1's indicating the significant region.
"""
m, n = stat_mgc_map.shape
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance. Threshold is based on a beta
# approximation.
per_sig = 1 - (0.02 / samp_size) # Percentile to consider as significant
threshold = samp_size * (samp_size - 3)/4 - 1/2 # Beta approximation
threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1
# the global scale at is the statistic calculated at maximial nearest
# neighbors. Threshold is the maximium on the global and local scales
threshold = max(threshold, stat_mgc_map[m - 1][n - 1])
# find the largest connected component of significant correlations
sig_connect = stat_mgc_map > threshold
if np.sum(sig_connect) > 0:
sig_connect, _ = measurements.label(sig_connect)
_, label_counts = np.unique(sig_connect, return_counts=True)
# skip the first element in label_counts, as it is count(zeros)
max_label = np.argmax(label_counts[1:]) + 1
sig_connect = sig_connect == max_label
else:
sig_connect = np.array([[False]])
return sig_connect
def _smooth_mgc_map(sig_connect, stat_mgc_map):
"""
Finds the smoothed maximal within the significant region R.
If area of R is too small it returns the last local correlation. Otherwise,
returns the maximum within significant_connected_region.
Parameters
----------
sig_connect: ndarray
A binary matrix with 1's indicating the significant region.
stat_mgc_map: ndarray
All local correlations within `[-1, 1]`.
Returns
-------
stat : float
The sample MGC statistic within `[-1, 1]`.
opt_scale: (float, float)
The estimated optimal scale as an `(x, y)` pair.
"""
m, n = stat_mgc_map.shape
# the global scale at is the statistic calculated at maximial nearest
# neighbors. By default, statistic and optimal scale are global.
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = [m, n]
if np.linalg.norm(sig_connect) != 0:
# proceed only when the connected region's area is sufficiently large
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance
if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n):
max_corr = max(stat_mgc_map[sig_connect])
# find all scales within significant_connected_region that maximize
# the local correlation
max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect)
if max_corr >= stat:
stat = max_corr
k, l = max_corr_index
one_d_indices = k * n + l # 2D to 1D indexing
k = np.max(one_d_indices) // n
l = np.max(one_d_indices) % n
opt_scale = [k+1, l+1] # adding 1s to match R indexing
return stat, opt_scale
def _two_sample_transform(u, v):
"""
Helper function that concatenates x and y for two sample MGC stat. See
above for use.
Parameters
----------
u, v : ndarray
`u` and `v` have shapes `(n, p)` and `(m, p)`.
Returns
-------
x : ndarray
Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape
`(2n, p)`.
y : ndarray
Label matrix for `x` where 0 refers to samples that comes from `u` and
1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`.
"""
nx = u.shape[0]
ny = v.shape[0]
x = np.concatenate([u, v], axis=0)
y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1)
return x, y
#####################################
# INFERENTIAL STATISTICS #
#####################################
Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))
def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'):
"""
Calculate the T-test for the mean of ONE group of scores.
This is a two-sided test for the null hypothesis that the expected value
(mean) of a sample of independent observations `a` is equal to the given
population mean, `popmean`.
Parameters
----------
a : array_like
Sample observation.
popmean : float or array_like
Expected value in null hypothesis. If array_like, then it must have the
same shape as `a` excluding the axis dimension.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
t-statistic.
pvalue : float or array
Two-sided p-value.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
Test if mean of random sample is equal to true mean, and different mean.
We reject the null hypothesis in the second case and don't reject it in
the first case.
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
Examples using axis and non-scalar dimension for population mean.
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
[ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
[ 7.89094663e-03, 1.49986458e-04]]))
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.ttest_1samp(a, popmean, axis)
n = a.shape[axis]
df = n - 1
d = np.mean(a, axis) - popmean
v = np.var(a, axis, ddof=1)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t)
return Ttest_1sampResult(t, prob)
def _ttest_finish(df, t):
"""Common code between all 3 t-test functions."""
prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tail
if t.ndim == 0:
t = t[()]
return t, prob
def _ttest_ind_from_stats(mean1, mean2, denom, df):
d = mean1 - mean2
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t)
return (t, prob)
def _unequal_var_ttest_denom(v1, n1, v2, n2):
vn1 = v1 / n1
vn2 = v2 / n2
with np.errstate(divide='ignore', invalid='ignore'):
df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
# If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
# Hence it doesn't matter what df is as long as it's not NaN.
df = np.where(np.isnan(df), 1, df)
denom = np.sqrt(vn1 + vn2)
return df, denom
def _equal_var_ttest_denom(v1, n1, v2, n2):
df = n1 + n2 - 2.0
svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
return df, denom
Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
equal_var=True):
r"""
T-test for means of two independent samples from descriptive statistics.
This is a two-sided test for the null hypothesis that two independent
samples have identical average (expected) values.
Parameters
----------
mean1 : array_like
The mean(s) of sample 1.
std1 : array_like
The standard deviation(s) of sample 1.
nobs1 : array_like
The number(s) of observations of sample 1.
mean2 : array_like
The mean(s) of sample 2.
std2 : array_like
The standard deviations(s) of sample 2.
nobs2 : array_like
The number(s) of observations of sample 2.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
Returns
-------
statistic : float or array
The calculated t-statistics.
pvalue : float or array
The two-tailed p-value.
See Also
--------
scipy.stats.ttest_ind
Notes
-----
.. versionadded:: 0.16.0
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
Examples
--------
Suppose we have the summary data for two samples, as follows::
Sample Sample
Size Mean Variance
Sample 1 13 15.0 87.5
Sample 2 11 12.0 39.0
Apply the t-test to this data (with the assumption that the population
variances are equal):
>>> from scipy.stats import ttest_ind_from_stats
>>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)
For comparison, here is the data from which those summary statistics
were taken. With this data, we can compute the same result using
`scipy.stats.ttest_ind`:
>>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
>>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
>>> from scipy.stats import ttest_ind
>>> ttest_ind(a, b)
Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
Suppose we instead have binary data and would like to apply a t-test to
compare the proportion of 1s in two independent groups::
Number of Sample Sample
Size ones Mean Variance
Sample 1 150 30 0.2 0.16
Sample 2 200 45 0.225 0.174375
The sample mean :math:`\hat{p}` is the proportion of ones in the sample
and the variance for a binary observation is estimated by
:math:`\hat{p}(1-\hat{p})`.
>>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150,
... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200)
Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874)
For comparison, we could compute the t statistic and p-value using
arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above.
>>> group1 = np.array([1]*30 + [0]*(150-30))
>>> group2 = np.array([1]*45 + [0]*(200-45))
>>> ttest_ind(group1, group2)
Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)
"""
if equal_var:
df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
else:
df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
std2**2, nobs2)
res = _ttest_ind_from_stats(mean1, mean2, denom, df)
return Ttest_indResult(*res)
def _ttest_nans(a, b, axis, namedtuple_type):
"""
Generate an array of `nan`, with shape determined by `a`, `b` and `axis`.
This function is used by ttest_ind and ttest_rel to create the return
value when one of the inputs has size 0.
The shapes of the arrays are determined by dropping `axis` from the
shapes of `a` and `b` and broadcasting what is left.
The return value is a named tuple of the type given in `namedtuple_type`.
Examples
--------
>>> a = np.zeros((9, 2))
>>> b = np.zeros((5, 1))
>>> _ttest_nans(a, b, 0, Ttest_indResult)
Ttest_indResult(statistic=array([nan, nan]), pvalue=array([nan, nan]))
>>> a = np.zeros((3, 0, 9))
>>> b = np.zeros((1, 10))
>>> stat, p = _ttest_nans(a, b, -1, Ttest_indResult)
>>> stat
array([], shape=(3, 0), dtype=float64)
>>> p
array([], shape=(3, 0), dtype=float64)
>>> a = np.zeros(10)
>>> b = np.zeros(7)
>>> _ttest_nans(a, b, 0, Ttest_indResult)
Ttest_indResult(statistic=nan, pvalue=nan)
"""
shp = _broadcast_shapes_with_dropped_axis(a, b, axis)
if len(shp) == 0:
t = np.nan
p = np.nan
else:
t = np.full(shp, fill_value=np.nan)
p = t.copy()
return namedtuple_type(t, p)
def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'):
"""
Calculate the T-test for the means of *two independent* samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples
have identical average (expected) values. This test assumes that the
populations have identical variances by default.
Parameters
----------
a, b : array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
.. versionadded:: 0.11.0
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
The calculated t-statistic.
pvalue : float or array
The two-tailed p-value.
Notes
-----
We can use this test, if we observe two independent samples from
the same or different population, e.g. exam scores of boys and
girls or of two ethnic groups. The test measures whether the
average (expected) value differs significantly across samples. If
we observe a large p-value, for example larger than 0.05 or 0.1,
then we cannot reject the null hypothesis of identical average scores.
If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
then we reject the null hypothesis of equal averages.
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678)
Test with sample with identical means:
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)
`ttest_ind` underestimates p for unequal variances:
>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)
When n1 != n2, the equal variance t-statistic is no longer equal to the
unequal variance t-statistic:
>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)
T-test with different means, variance, and n:
>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)
"""
a, b, axis = _chk2_asarray(a, b, axis)
# check both a and b
cna, npa = _contains_nan(a, nan_policy)
cnb, npb = _contains_nan(b, nan_policy)
contains_nan = cna or cnb
if npa == 'omit' or npb == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
b = ma.masked_invalid(b)
return mstats_basic.ttest_ind(a, b, axis, equal_var)
if a.size == 0 or b.size == 0:
return _ttest_nans(a, b, axis, Ttest_indResult)
v1 = np.var(a, axis, ddof=1)
v2 = np.var(b, axis, ddof=1)
n1 = a.shape[axis]
n2 = b.shape[axis]
if equal_var:
df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
else:
df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)
res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df)
return Ttest_indResult(*res)
def _get_len(a, axis, msg):
try:
n = a.shape[axis]
except IndexError:
raise np.AxisError(axis, a.ndim, msg) from None
return n
Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))
def ttest_rel(a, b, axis=0, nan_policy='propagate'):
"""
Calculate the t-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or
repeated samples have identical average (expected) values.
Parameters
----------
a, b : array_like
The arrays must have the same shape.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
t-statistic.
pvalue : float or array
Two-sided p-value.
Notes
-----
Examples for use are scores of the same set of student in
different exams, or repeated sampling from the same units. The
test measures whether the average score differs significantly
across samples (e.g. exams). If we observe a large p-value, for
example greater than 0.05 or 0.1 then we cannot reject the null
hypothesis of identical average scores. If the p-value is smaller
than the threshold, e.g. 1%, 5% or 10%, then we reject the null
hypothesis of equal averages. Small p-values are associated with
large t-statistics.
References
----------
https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
"""
a, b, axis = _chk2_asarray(a, b, axis)
cna, npa = _contains_nan(a, nan_policy)
cnb, npb = _contains_nan(b, nan_policy)
contains_nan = cna or cnb
if npa == 'omit' or npb == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
b = ma.masked_invalid(b)
m = ma.mask_or(ma.getmask(a), ma.getmask(b))
aa = ma.array(a, mask=m, copy=True)
bb = ma.array(b, mask=m, copy=True)
return mstats_basic.ttest_rel(aa, bb, axis)
na = _get_len(a, axis, "first argument")
nb = _get_len(b, axis, "second argument")
if na != nb:
raise ValueError('unequal length arrays')
if na == 0:
return _ttest_nans(a, b, axis, Ttest_relResult)
n = a.shape[axis]
df = n - 1
d = (a - b).astype(np.float64)
v = np.var(d, axis, ddof=1)
dm = np.mean(d, axis)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(dm, denom)
t, prob = _ttest_finish(df, t)
return Ttest_relResult(t, prob)
# Map from names to lambda_ values used in power_divergence().
_power_div_lambda_names = {
"pearson": 1,
"log-likelihood": 0,
"freeman-tukey": -0.5,
"mod-log-likelihood": -1,
"neyman": -2,
"cressie-read": 2/3,
}
def _count(a, axis=None):
"""
Count the number of non-masked elements of an array.
This function behaves like np.ma.count(), but is much faster
for ndarrays.
"""
if hasattr(a, 'count'):
num = a.count(axis=axis)
if isinstance(num, np.ndarray) and num.ndim == 0:
# In some cases, the `count` method returns a scalar array (e.g.
# np.array(3)), but we want a plain integer.
num = int(num)
else:
if axis is None:
num = a.size
else:
num = a.shape[axis]
return num
Power_divergenceResult = namedtuple('Power_divergenceResult',
('statistic', 'pvalue'))
def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
"""
Cressie-Read power divergence statistic and goodness of fit test.
This function tests the null hypothesis that the categorical data
has the given frequencies, using the Cressie-Read power divergence
statistic.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
lambda_ : float or str, optional
The power in the Cressie-Read power divergence statistic. The default
is 1. For convenience, `lambda_` may be assigned one of the following
strings, in which case the corresponding numerical value is used::
String Value Description
"pearson" 1 Pearson's chi-squared statistic.
In this case, the function is
equivalent to `stats.chisquare`.
"log-likelihood" 0 Log-likelihood ratio. Also known as
the G-test [3]_.
"freeman-tukey" -1/2 Freeman-Tukey statistic.
"mod-log-likelihood" -1 Modified log-likelihood ratio.
"neyman" -2 Neyman's statistic.
"cressie-read" 2/3 The power recommended in [5]_.
Returns
-------
statistic : float or ndarray
The Cressie-Read power divergence test statistic. The value is
a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
pvalue : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `stat` are scalars.
See Also
--------
chisquare
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
When `lambda_` is less than zero, the formula for the statistic involves
dividing by `f_obs`, so a warning or error may be generated if any value
in `f_obs` is 0.
Similarly, a warning or error may be generated if any value in `f_exp` is
zero when `lambda_` >= 0.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not a chisquare, in which case this
test is not appropriate.
This function handles masked arrays. If an element of `f_obs` or `f_exp`
is masked, then data at that position is ignored, and does not count
towards the size of the data set.
.. versionadded:: 0.13.0
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
.. [3] "G-test", https://en.wikipedia.org/wiki/G-test
.. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
practice of statistics in biological research", New York: Freeman
(1981)
.. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
pp. 440-464.
Examples
--------
(See `chisquare` for more examples.)
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies. Here we
perform a G-test (i.e. use the log-likelihood ratio statistic):
>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)
The expected frequencies can be given with the `f_exp` argument:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)
`ddof` is the change to make to the default degrees of freedom.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
The calculation of the p-values is done by broadcasting the
test statistic with `ddof`.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we must use ``axis=1``:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
"""
# Convert the input argument `lambda_` to a numerical value.
if isinstance(lambda_, str):
if lambda_ not in _power_div_lambda_names:
names = repr(list(_power_div_lambda_names.keys()))[1:-1]
raise ValueError("invalid string for lambda_: {0!r}. Valid strings "
"are {1}".format(lambda_, names))
lambda_ = _power_div_lambda_names[lambda_]
elif lambda_ is None:
lambda_ = 1
f_obs = np.asanyarray(f_obs)
if f_exp is not None:
f_exp = np.asanyarray(f_exp)
else:
# Ignore 'invalid' errors so the edge case of a data set with length 0
# is handled without spurious warnings.
with np.errstate(invalid='ignore'):
f_exp = f_obs.mean(axis=axis, keepdims=True)
# `terms` is the array of terms that are summed along `axis` to create
# the test statistic. We use some specialized code for a few special
# cases of lambda_.
if lambda_ == 1:
# Pearson's chi-squared statistic
terms = (f_obs.astype(np.float64) - f_exp)**2 / f_exp
elif lambda_ == 0:
# Log-likelihood ratio (i.e. G-test)
terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
elif lambda_ == -1:
# Modified log-likelihood ratio
terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
else:
# General Cressie-Read power divergence.
terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
terms /= 0.5 * lambda_ * (lambda_ + 1)
stat = terms.sum(axis=axis)
num_obs = _count(terms, axis=axis)
ddof = asarray(ddof)
p = distributions.chi2.sf(stat, num_obs - 1 - ddof)
return Power_divergenceResult(stat, p)
def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
"""
Calculate a one-way chi-square test.
The chi-square test tests the null hypothesis that the categorical data
has the given frequencies.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
Returns
-------
chisq : float or ndarray
The chi-squared test statistic. The value is a float if `axis` is
None or `f_obs` and `f_exp` are 1-D.
p : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `chisq` are scalars.
See Also
--------
scipy.stats.power_divergence
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not chi-square, in which case this test
is not appropriate.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
Examples
--------
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies.
>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)
With `f_exp` the expected frequencies can be given.
>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)
`ddof` is the change to make to the default degrees of freedom.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
The calculation of the p-values is done by broadcasting the
chi-squared statistic with `ddof`.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we use ``axis=1``:
>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
"""
return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
lambda_="pearson")
KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue'))
def _compute_dplus(cdfvals):
"""Computes D+ as used in the Kolmogorov-Smirnov test.
Parameters
----------
cdfvals: array_like
Sorted array of CDF values between 0 and 1
Returns
-------
Maximum distance of the CDF values below Uniform(0, 1)
"""
n = len(cdfvals)
return (np.arange(1.0, n + 1) / n - cdfvals).max()
def _compute_dminus(cdfvals):
"""Computes D- as used in the Kolmogorov-Smirnov test.
Parameters
----------
cdfvals: array_like
Sorted array of CDF values between 0 and 1
Returns
-------
Maximum distance of the CDF values above Uniform(0, 1)
"""
n = len(cdfvals)
return (cdfvals - np.arange(0.0, n)/n).max()
def ks_1samp(x, cdf, args=(), alternative='two-sided', mode='auto'):
"""
Performs the Kolmogorov-Smirnov test for goodness of fit.
This performs a test of the distribution F(x) of an observed
random variable against a given distribution G(x). Under the null
hypothesis, the two distributions are identical, F(x)=G(x). The
alternative hypothesis can be either 'two-sided' (default), 'less'
or 'greater'. The KS test is only valid for continuous distributions.
Parameters
----------
x : array_like
a 1-D array of observations of iid random variables.
cdf : callable
callable used to calculate the cdf.
args : tuple, sequence, optional
Distribution parameters, used with `cdf`.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided, see explanation in Notes
* 'greater': one-sided, see explanation in Notes
mode : {'auto', 'exact', 'approx', 'asymp'}, optional
Defines the distribution used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : selects one of the other options.
* 'exact' : uses the exact distribution of test statistic.
* 'approx' : approximates the two-sided probability with twice the one-sided probability
* 'asymp': uses asymptotic distribution of test statistic
Returns
-------
statistic : float
KS test statistic, either D, D+ or D- (depending on the value of 'alternative')
pvalue : float
One-tailed or two-tailed p-value.
See Also
--------
ks_2samp, kstest
Notes
-----
In the one-sided test, the alternative is that the empirical
cumulative distribution function of the random variable is "less"
or "greater" than the cumulative distribution function G(x) of the
hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.
Examples
--------
>>> from scipy import stats
>>> x = np.linspace(-15, 15, 9)
>>> stats.ks_1samp(x, stats.norm.cdf)
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> stats.ks_1samp(stats.norm.rvs(size=100), stats.norm.cdf)
(0.058352892479417884, 0.8653960860778898)
*Test against one-sided alternative hypothesis*
Shift distribution to larger values, so that `` CDF(x) < norm.cdf(x)``:
>>> np.random.seed(987654321)
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> stats.ks_1samp(x, stats.norm.cdf, alternative='less')
(0.12464329735846891, 0.040989164077641749)
Reject equal distribution against alternative hypothesis: less
>>> stats.ks_1samp(x, stats.norm.cdf, alternative='greater')
(0.0072115233216311081, 0.98531158590396395)
Don't reject equal distribution against alternative hypothesis: greater
>>> stats.ks_1samp(x, stats.norm.cdf)
(0.12464329735846891, 0.08197335233541582)
Don't reject equal distribution against alternative hypothesis: two-sided
*Testing t distributed random variables against normal distribution*
With 100 degrees of freedom the t distribution looks close to the normal
distribution, and the K-S test does not reject the hypothesis that the
sample came from the normal distribution:
>>> np.random.seed(987654321)
>>> stats.ks_1samp(stats.t.rvs(100,size=100), stats.norm.cdf)
(0.072018929165471257, 0.6505883498379312)
With 3 degrees of freedom the t distribution looks sufficiently different
from the normal distribution, that we can reject the hypothesis that the
sample came from the normal distribution at the 10% level:
>>> np.random.seed(987654321)
>>> stats.ks_1samp(stats.t.rvs(3,size=100), stats.norm.cdf)
(0.131016895759829, 0.058826222555312224)
"""
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
alternative.lower()[0], alternative)
if alternative not in ['two-sided', 'greater', 'less']:
raise ValueError("Unexpected alternative %s" % alternative)
if np.ma.is_masked(x):
x = x.compressed()
N = len(x)
x = np.sort(x)
cdfvals = cdf(x, *args)
if alternative == 'greater':
Dplus = _compute_dplus(cdfvals)
return KstestResult(Dplus, distributions.ksone.sf(Dplus, N))
if alternative == 'less':
Dminus = _compute_dminus(cdfvals)
return KstestResult(Dminus, distributions.ksone.sf(Dminus, N))
# alternative == 'two-sided':
Dplus = _compute_dplus(cdfvals)
Dminus = _compute_dminus(cdfvals)
D = np.max([Dplus, Dminus])
if mode == 'auto': # Always select exact
mode = 'exact'
if mode == 'exact':
prob = distributions.kstwo.sf(D, N)
elif mode == 'asymp':
prob = distributions.kstwobign.sf(D * np.sqrt(N))
else:
# mode == 'approx'
prob = 2 * distributions.ksone.sf(D, N)
prob = np.clip(prob, 0, 1)
return KstestResult(D, prob)
Ks_2sampResult = KstestResult
def _compute_prob_inside_method(m, n, g, h):
"""
Count the proportion of paths that stay strictly inside two diagonal lines.
Parameters
----------
m : integer
m > 0
n : integer
n > 0
g : integer
g is greatest common divisor of m and n
h : integer
0 <= h <= lcm(m,n)
Returns
-------
p : float
The proportion of paths that stay inside the two lines.
Count the integer lattice paths from (0, 0) to (m, n) which satisfy
|x/m - y/n| < h / lcm(m, n).
The paths make steps of size +1 in either positive x or positive y directions.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
Hodges, J.L. Jr.,
"The Significance Probability of the Smirnov Two-Sample Test,"
Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
"""
# Probability is symmetrical in m, n. Computation below uses m >= n.
if m < n:
m, n = n, m
mg = m // g
ng = n // g
# Count the integer lattice paths from (0, 0) to (m, n) which satisfy
# |nx/g - my/g| < h.
# Compute matrix A such that:
# A(x, 0) = A(0, y) = 1
# A(x, y) = A(x, y-1) + A(x-1, y), for x,y>=1, except that
# A(x, y) = 0 if |x/m - y/n|>= h
# Probability is A(m, n)/binom(m+n, n)
# Optimizations exist for m==n, m==n*p.
# Only need to preserve a single column of A, and only a sliding window of it.
# minj keeps track of the slide.
minj, maxj = 0, min(int(np.ceil(h / mg)), n + 1)
curlen = maxj - minj
# Make a vector long enough to hold maximum window needed.
lenA = min(2 * maxj + 2, n + 1)
# This is an integer calculation, but the entries are essentially
# binomial coefficients, hence grow quickly.
# Scaling after each column is computed avoids dividing by a
# large binomial coefficent at the end, but is not sufficient to avoid
# the large dyanamic range which appears during the calculation.
# Instead we rescale based on the magnitude of the right most term in
# the column and keep track of an exponent separately and apply
# it at the end of the calculation. Similarly when multiplying by
# the binomial coefficint
dtype = np.float64
A = np.zeros(lenA, dtype=dtype)
# Initialize the first column
A[minj:maxj] = 1
expnt = 0
for i in range(1, m + 1):
# Generate the next column.
# First calculate the sliding window
lastminj, lastlen = minj, curlen
minj = max(int(np.floor((ng * i - h) / mg)) + 1, 0)
minj = min(minj, n)
maxj = min(int(np.ceil((ng * i + h) / mg)), n + 1)
if maxj <= minj:
return 0
# Now fill in the values
A[0:maxj - minj] = np.cumsum(A[minj - lastminj:maxj - lastminj])
curlen = maxj - minj
if lastlen > curlen:
# Set some carried-over elements to 0
A[maxj - minj:maxj - minj + (lastlen - curlen)] = 0
# Rescale if the right most value is over 2**900
val = A[maxj - minj - 1]
_, valexpt = math.frexp(val)
if valexpt > 900:
# Scaling to bring down to about 2**800 appears
# sufficient for sizes under 10000.
valexpt -= 800
A = np.ldexp(A, -valexpt)
expnt += valexpt
val = A[maxj - minj - 1]
# Now divide by the binomial (m+n)!/m!/n!
for i in range(1, n + 1):
val = (val * i) / (m + i)
_, valexpt = math.frexp(val)
if valexpt < -128:
val = np.ldexp(val, -valexpt)
expnt += valexpt
# Finally scale if needed.
return np.ldexp(val, expnt)
def _compute_prob_outside_square(n, h):
"""
Compute the proportion of paths that pass outside the two diagonal lines.
Parameters
----------
n : integer
n > 0
h : integer
0 <= h <= n
Returns
-------
p : float
The proportion of paths that pass outside the lines x-y = +/-h.
"""
# Compute Pr(D_{n,n} >= h/n)
# Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... ) / binom(2n, n)
# This formulation exhibits subtractive cancellation.
# Instead divide each term by binom(2n, n), then factor common terms
# and use a Horner-like algorithm
# P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...)))))
P = 0.0
k = int(np.floor(n / h))
while k >= 0:
p1 = 1.0
# Each of the Ai terms has numerator and denominator with h simple terms.
for j in range(h):
p1 = (n - k * h - j) * p1 / (n + k * h + j + 1)
P = p1 * (1.0 - P)
k -= 1
return 2 * P
def _count_paths_outside_method(m, n, g, h):
"""
Count the number of paths that pass outside the specified diagonal.
Parameters
----------
m : integer
m > 0
n : integer
n > 0
g : integer
g is greatest common divisor of m and n
h : integer
0 <= h <= lcm(m,n)
Returns
-------
p : float
The number of paths that go low.
The calculation may overflow - check for a finite answer.
Exceptions
----------
FloatingPointError: Raised if the intermediate computation goes outside
the range of a float.
Notes
-----
Count the integer lattice paths from (0, 0) to (m, n), which at some
point (x, y) along the path, satisfy:
m*y <= n*x - h*g
The paths make steps of size +1 in either positive x or positive y directions.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
Hodges, J.L. Jr.,
"The Significance Probability of the Smirnov Two-Sample Test,"
Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
"""
# Compute #paths which stay lower than x/m-y/n = h/lcm(m,n)
# B(x, y) = #{paths from (0,0) to (x,y) without previously crossing the boundary}
# = binom(x, y) - #{paths which already reached the boundary}
# Multiply by the number of path extensions going from (x, y) to (m, n)
# Sum.
# Probability is symmetrical in m, n. Computation below assumes m >= n.
if m < n:
m, n = n, m
mg = m // g
ng = n // g
# Not every x needs to be considered.
# xj holds the list of x values to be checked.
# Wherever n*x/m + ng*h crosses an integer
lxj = n + (mg-h)//mg
xj = [(h + mg * j + ng-1)//ng for j in range(lxj)]
# B is an array just holding a few values of B(x,y), the ones needed.
# B[j] == B(x_j, j)
if lxj == 0:
return np.round(special.binom(m + n, n))
B = np.zeros(lxj)
B[0] = 1
# Compute the B(x, y) terms
# The binomial coefficient is an integer, but special.binom() may return a float.
# Round it to the nearest integer.
for j in range(1, lxj):
Bj = np.round(special.binom(xj[j] + j, j))
if not np.isfinite(Bj):
raise FloatingPointError()
for i in range(j):
bin = np.round(special.binom(xj[j] - xj[i] + j - i, j-i))
Bj -= bin * B[i]
B[j] = Bj
if not np.isfinite(Bj):
raise FloatingPointError()
# Compute the number of path extensions...
num_paths = 0
for j in range(lxj):
bin = np.round(special.binom((m-xj[j]) + (n - j), n-j))
term = B[j] * bin
if not np.isfinite(term):
raise FloatingPointError()
num_paths += term
return np.round(num_paths)
def _attempt_exact_2kssamp(n1, n2, g, d, alternative):
"""Attempts to compute the exact 2sample probability.
n1, n2 are the sample sizes
g is the gcd(n1, n2)
d is the computed max difference in ECDFs
Returns (success, d, probability)
"""
lcm = (n1 // g) * n2
h = int(np.round(d * lcm))
d = h * 1.0 / lcm
if h == 0:
return True, d, 1.0
saw_fp_error, prob = False, np.nan
try:
if alternative == 'two-sided':
if n1 == n2:
prob = _compute_prob_outside_square(n1, h)
else:
prob = 1 - _compute_prob_inside_method(n1, n2, g, h)
else:
if n1 == n2:
# prob = binom(2n, n-h) / binom(2n, n)
# Evaluating in that form incurs roundoff errors
# from special.binom. Instead calculate directly
jrange = np.arange(h)
prob = np.prod((n1 - jrange) / (n1 + jrange + 1.0))
else:
num_paths = _count_paths_outside_method(n1, n2, g, h)
bin = special.binom(n1 + n2, n1)
if not np.isfinite(bin) or not np.isfinite(num_paths) or num_paths > bin:
saw_fp_error = True
else:
prob = num_paths / bin
except FloatingPointError:
saw_fp_error = True
if saw_fp_error:
return False, d, np.nan
if not (0 <= prob <= 1):
return False, d, prob
return True, d, prob
def ks_2samp(data1, data2, alternative='two-sided', mode='auto'):
"""
Compute the Kolmogorov-Smirnov statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples
are drawn from the same continuous distribution. The alternative hypothesis
can be either 'two-sided' (default), 'less' or 'greater'.
Parameters
----------
data1, data2 : array_like, 1-Dimensional
Two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be different.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided, see explanation in Notes
* 'greater': one-sided, see explanation in Notes
mode : {'auto', 'exact', 'asymp'}, optional
Defines the method used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : use 'exact' for small size arrays, 'asymp' for large
* 'exact' : use exact distribution of test statistic
* 'asymp' : use asymptotic distribution of test statistic
Returns
-------
statistic : float
KS statistic.
pvalue : float
Two-tailed p-value.
See Also
--------
kstest, ks_1samp, epps_singleton_2samp, anderson_ksamp
Notes
-----
This tests whether 2 samples are drawn from the same distribution. Note
that, like in the case of the one-sample KS test, the distribution is
assumed to be continuous.
In the one-sided test, the alternative is that the empirical
cumulative distribution function F(x) of the data1 variable is "less"
or "greater" than the empirical cumulative distribution function G(x)
of the data2 variable, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.
If the KS statistic is small or the p-value is high, then we cannot
reject the hypothesis that the distributions of the two samples
are the same.
If the mode is 'auto', the computation is exact if the sample sizes are
less than 10000. For larger sizes, the computation uses the
Kolmogorov-Smirnov distributions to compute an approximate value.
The 'two-sided' 'exact' computation computes the complementary probability
and then subtracts from 1. As such, the minimum probability it can return
is about 1e-16. While the algorithm itself is exact, numerical
errors may accumulate for large sample sizes. It is most suited to
situations in which one of the sample sizes is only a few thousand.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_.
References
----------
.. [1] Hodges, J.L. Jr., "The Significance Probability of the Smirnov
Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678) #fix random seed to get the same result
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample
For a different distribution, we can reject the null hypothesis since the
pvalue is below 1%:
>>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
>>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
>>> stats.ks_2samp(rvs1, rvs2)
(0.20833333333333334, 5.129279597781977e-05)
For a slightly different distribution, we cannot reject the null hypothesis
at a 10% or lower alpha since the p-value at 0.144 is higher than 10%
>>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs3)
(0.10333333333333333, 0.14691437867433876)
For an identical distribution, we cannot reject the null hypothesis since
the p-value is high, 41%:
>>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs4)
(0.07999999999999996, 0.41126949729859719)
"""
if mode not in ['auto', 'exact', 'asymp']:
raise ValueError(f'Invalid value for mode: {mode}')
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
alternative.lower()[0], alternative)
if alternative not in ['two-sided', 'less', 'greater']:
raise ValueError(f'Invalid value for alternative: {alternative}')
MAX_AUTO_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= MAX_AUTO_N
if np.ma.is_masked(data1):
data1 = data1.compressed()
if np.ma.is_masked(data2):
data2 = data2.compressed()
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
if min(n1, n2) == 0:
raise ValueError('Data passed to ks_2samp must not be empty')
data_all = np.concatenate([data1, data2])
# using searchsorted solves equal data problem
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
cddiffs = cdf1 - cdf2
minS = np.clip(-np.min(cddiffs), 0, 1) # Ensure sign of minS is not negative.
maxS = np.max(cddiffs)
alt2Dvalue = {'less': minS, 'greater': maxS, 'two-sided': max(minS, maxS)}
d = alt2Dvalue[alternative]
g = gcd(n1, n2)
n1g = n1 // g
n2g = n2 // g
prob = -np.inf
original_mode = mode
if mode == 'auto':
mode = 'exact' if max(n1, n2) <= MAX_AUTO_N else 'asymp'
elif mode == 'exact':
# If lcm(n1, n2) is too big, switch from exact to asymp
if n1g >= np.iinfo(np.int_).max / n2g:
mode = 'asymp'
warnings.warn(
f"Exact ks_2samp calculation not possible with samples sizes "
f"{n1} and {n2}. Switching to 'asymp'.", RuntimeWarning)
if mode == 'exact':
success, d, prob = _attempt_exact_2kssamp(n1, n2, g, d, alternative)
if not success:
mode = 'asymp'
if original_mode == 'exact':
warnings.warn(f"ks_2samp: Exact calculation unsuccessful. "
f"Switching to mode={mode}.", RuntimeWarning)
if mode == 'asymp':
# The product n1*n2 is large. Use Smirnov's asymptoptic formula.
# Ensure float to avoid overflow in multiplication
# sorted because the one-sided formula is not symmetric in n1, n2
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
if alternative == 'two-sided':
prob = distributions.kstwo.sf(d, np.round(en))
else:
z = np.sqrt(en) * d
# Use Hodges' suggested approximation Eqn 5.3
# Requires m to be the larger of (n1, n2)
expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
prob = np.exp(expt)
prob = np.clip(prob, 0, 1)
return KstestResult(d, prob)
def _parse_kstest_args(data1, data2, args, N):
# kstest allows many different variations of arguments.
# Pull out the parsing into a separate function
# (xvals, yvals, ) # 2sample
# (xvals, cdf function,..)
# (xvals, name of distribution, ...)
# (name of distribution, name of distribution, ...)
# Returns xvals, yvals, cdf
# where cdf is a cdf function, or None
# and yvals is either an array_like of values, or None
# and xvals is array_like.
rvsfunc, cdf = None, None
if isinstance(data1, str):
rvsfunc = getattr(distributions, data1).rvs
elif callable(data1):
rvsfunc = data1
if isinstance(data2, str):
cdf = getattr(distributions, data2).cdf
data2 = None
elif callable(data2):
cdf = data2
data2 = None
data1 = np.sort(rvsfunc(*args, size=N) if rvsfunc else data1)
return data1, data2, cdf
def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='auto'):
"""
Performs the (one sample or two samples) Kolmogorov-Smirnov test for goodness of fit.
The one-sample test performs a test of the distribution F(x) of an observed
random variable against a given distribution G(x). Under the null
hypothesis, the two distributions are identical, F(x)=G(x). The
alternative hypothesis can be either 'two-sided' (default), 'less'
or 'greater'. The KS test is only valid for continuous distributions.
The two-sample test tests whether the two independent samples are drawn
from the same continuous distribution.
Parameters
----------
rvs : str, array_like, or callable
If an array, it should be a 1-D array of observations of random
variables.
If a callable, it should be a function to generate random variables;
it is required to have a keyword argument `size`.
If a string, it should be the name of a distribution in `scipy.stats`,
which will be used to generate random variables.
cdf : str, array_like or callable
If array_like, it should be a 1-D array of observations of random
variables, and the two-sample test is performed (and rvs must be array_like)
If a callable, that callable is used to calculate the cdf.
If a string, it should be the name of a distribution in `scipy.stats`,
which will be used as the cdf function.
args : tuple, sequence, optional
Distribution parameters, used if `rvs` or `cdf` are strings or callables.
N : int, optional
Sample size if `rvs` is string or callable. Default is 20.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided, see explanation in Notes
* 'greater': one-sided, see explanation in Notes
mode : {'auto', 'exact', 'approx', 'asymp'}, optional
Defines the distribution used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : selects one of the other options.
* 'exact' : uses the exact distribution of test statistic.
* 'approx' : approximates the two-sided probability with twice the one-sided probability
* 'asymp': uses asymptotic distribution of test statistic
Returns
-------
statistic : float
KS test statistic, either D, D+ or D-.
pvalue : float
One-tailed or two-tailed p-value.
See Also
--------
ks_2samp
Notes
-----
In the one-sided test, the alternative is that the empirical
cumulative distribution function of the random variable is "less"
or "greater" than the cumulative distribution function G(x) of the
hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.
Examples
--------
>>> from scipy import stats
>>> x = np.linspace(-15, 15, 9)
>>> stats.kstest(x, 'norm')
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> stats.kstest(stats.norm.rvs(size=100), stats.norm.cdf)
(0.058352892479417884, 0.8653960860778898)
The above lines are equivalent to:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.norm.rvs, 'norm', N=100)
(0.058352892479417884, 0.8653960860778898)
*Test against one-sided alternative hypothesis*
Shift distribution to larger values, so that ``CDF(x) < norm.cdf(x)``:
>>> np.random.seed(987654321)
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> stats.kstest(x, 'norm', alternative='less')
(0.12464329735846891, 0.040989164077641749)
Reject equal distribution against alternative hypothesis: less
>>> stats.kstest(x, 'norm', alternative='greater')
(0.0072115233216311081, 0.98531158590396395)
Don't reject equal distribution against alternative hypothesis: greater
>>> stats.kstest(x, 'norm')
(0.12464329735846891, 0.08197335233541582)
*Testing t distributed random variables against normal distribution*
With 100 degrees of freedom the t distribution looks close to the normal
distribution, and the K-S test does not reject the hypothesis that the
sample came from the normal distribution:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100, size=100), 'norm')
(0.072018929165471257, 0.6505883498379312)
With 3 degrees of freedom the t distribution looks sufficiently different
from the normal distribution, that we can reject the hypothesis that the
sample came from the normal distribution at the 10% level:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3, size=100), 'norm')
(0.131016895759829, 0.058826222555312224)
"""
# to not break compatibility with existing code
if alternative == 'two_sided':
alternative = 'two-sided'
if alternative not in ['two-sided', 'greater', 'less']:
raise ValueError("Unexpected alternative %s" % alternative)
xvals, yvals, cdf = _parse_kstest_args(rvs, cdf, args, N)
if cdf:
return ks_1samp(xvals, cdf, args=args, alternative=alternative, mode=mode)
return ks_2samp(xvals, yvals, alternative=alternative, mode=mode)
def tiecorrect(rankvals):
"""
Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
Parameters
----------
rankvals : array_like
A 1-D sequence of ranks. Typically this will be the array
returned by `~scipy.stats.rankdata`.
Returns
-------
factor : float
Correction factor for U or H.
See Also
--------
rankdata : Assign ranks to the data
mannwhitneyu : Mann-Whitney rank test
kruskal : Kruskal-Wallis H test
References
----------
.. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
Sciences. New York: McGraw-Hill.
Examples
--------
>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333
"""
arr = np.sort(rankvals)
idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
cnt = np.diff(idx).astype(np.float64)
size = np.float64(arr.size)
return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)
MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))
def mannwhitneyu(x, y, use_continuity=True, alternative=None):
"""
Compute the Mann-Whitney rank test on samples x and y.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
use_continuity : bool, optional
Whether a continuity correction (1/2.) should be taken into
account. Default is True.
alternative : {None, 'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is None):
* None: computes p-value half the size of the 'two-sided' p-value and
a different U statistic. The default behavior is not the same as
using 'less' or 'greater'; it only exists for backward compatibility
and is deprecated.
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
Use of the None option is deprecated.
Returns
-------
statistic : float
The Mann-Whitney U statistic, equal to min(U for x, U for y) if
`alternative` is equal to None (deprecated; exists for backward
compatibility), and U for y otherwise.
pvalue : float
p-value assuming an asymptotic normal distribution. One-sided or
two-sided, depending on the choice of `alternative`.
Notes
-----
Use only when the number of observation in each sample is > 20 and
you have 2 independent samples of ranks. Mann-Whitney U is
significant if the u-obtained is LESS THAN or equal to the critical
value of U.
This test corrects for ties and by default uses a continuity correction.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mann-Whitney_U_test
.. [2] H.B. Mann and D.R. Whitney, "On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other," The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947.
"""
if alternative is None:
warnings.warn("Calling `mannwhitneyu` without specifying "
"`alternative` is deprecated.", DeprecationWarning)
x = np.asarray(x)
y = np.asarray(y)
n1 = len(x)
n2 = len(y)
ranked = rankdata(np.concatenate((x, y)))
rankx = ranked[0:n1] # get the x-ranks
u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x
u2 = n1*n2 - u1 # remainder is U for y
T = tiecorrect(ranked)
if T == 0:
raise ValueError('All numbers are identical in mannwhitneyu')
sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0)
meanrank = n1*n2/2.0 + 0.5 * use_continuity
if alternative is None or alternative == 'two-sided':
bigu = max(u1, u2)
elif alternative == 'less':
bigu = u1
elif alternative == 'greater':
bigu = u2
else:
raise ValueError("alternative should be None, 'less', 'greater' "
"or 'two-sided'")
z = (bigu - meanrank) / sd
if alternative is None:
# This behavior, equal to half the size of the two-sided
# p-value, is deprecated.
p = distributions.norm.sf(abs(z))
elif alternative == 'two-sided':
p = 2 * distributions.norm.sf(abs(z))
else:
p = distributions.norm.sf(z)
u = u2
# This behavior is deprecated.
if alternative is None:
u = min(u1, u2)
return MannwhitneyuResult(u, p)
RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))
def ranksums(x, y):
"""
Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets
of measurements are drawn from the same distribution. The alternative
hypothesis is that values in one sample are more likely to be
larger than the values in the other sample.
This test should be used to compare two samples from continuous
distributions. It does not handle ties between measurements
in x and y. For tie-handling and an optional continuity correction
see `scipy.stats.mannwhitneyu`.
Parameters
----------
x,y : array_like
The data from the two samples.
Returns
-------
statistic : float
The test statistic under the large-sample approximation that the
rank sum statistic is normally distributed.
pvalue : float
The two-sided p-value of the test.
References
----------
.. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
Examples
--------
We can test the hypothesis that two independent unequal-sized samples are
drawn from the same distribution with computing the Wilcoxon rank-sum
statistic.
>>> from scipy.stats import ranksums
>>> sample1 = np.random.uniform(-1, 1, 200)
>>> sample2 = np.random.uniform(-0.5, 1.5, 300) # a shifted distribution
>>> ranksums(sample1, sample2)
RanksumsResult(statistic=-7.887059, pvalue=3.09390448e-15) # may vary
The p-value of less than ``0.05`` indicates that this test rejects the
hypothesis at the 5% significance level.
"""
x, y = map(np.asarray, (x, y))
n1 = len(x)
n2 = len(y)
alldata = np.concatenate((x, y))
ranked = rankdata(alldata)
x = ranked[:n1]
s = np.sum(x, axis=0)
expected = n1 * (n1+n2+1) / 2.0
z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
prob = 2 * distributions.norm.sf(abs(z))
return RanksumsResult(z, prob)
KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
def kruskal(*args, **kwargs):
"""
Compute the Kruskal-Wallis H-test for independent samples.
The Kruskal-Wallis H-test tests the null hypothesis that the population
median of all of the groups are equal. It is a non-parametric version of
ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not
indicate which of the groups differs. Post hoc comparisons between
groups are required to determine which groups are different.
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Kruskal-Wallis H statistic, corrected for ties.
pvalue : float
The p-value for the test using the assumption that H has a chi
square distribution.
See Also
--------
f_oneway : 1-way ANOVA.
mannwhitneyu : Mann-Whitney rank test on two samples.
friedmanchisquare : Friedman test for repeated measurements.
Notes
-----
Due to the assumption that H has a chi square distribution, the number
of samples in each group must not be too small. A typical rule is
that each sample must have at least 5 measurements.
References
----------
.. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
One-Criterion Variance Analysis", Journal of the American Statistical
Association, Vol. 47, Issue 260, pp. 583-621, 1952.
.. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
Examples
--------
>>> from scipy import stats
>>> x = [1, 3, 5, 7, 9]
>>> y = [2, 4, 6, 8, 10]
>>> stats.kruskal(x, y)
KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)
>>> x = [1, 1, 1]
>>> y = [2, 2, 2]
>>> z = [2, 2]
>>> stats.kruskal(x, y, z)
KruskalResult(statistic=7.0, pvalue=0.0301973834223185)
"""
args = list(map(np.asarray, args))
num_groups = len(args)
if num_groups < 2:
raise ValueError("Need at least two groups in stats.kruskal()")
for arg in args:
if arg.size == 0:
return KruskalResult(np.nan, np.nan)
n = np.asarray(list(map(len, args)))
if 'nan_policy' in kwargs.keys():
if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'):
raise ValueError("nan_policy must be 'propagate', "
"'raise' or'omit'")
else:
nan_policy = kwargs['nan_policy']
else:
nan_policy = 'propagate'
contains_nan = False
for arg in args:
cn = _contains_nan(arg, nan_policy)
if cn[0]:
contains_nan = True
break
if contains_nan and nan_policy == 'omit':
for a in args:
a = ma.masked_invalid(a)
return mstats_basic.kruskal(*args)
if contains_nan and nan_policy == 'propagate':
return KruskalResult(np.nan, np.nan)
alldata = np.concatenate(args)
ranked = rankdata(alldata)
ties = tiecorrect(ranked)
if ties == 0:
raise ValueError('All numbers are identical in kruskal')
# Compute sum^2/n for each group and sum
j = np.insert(np.cumsum(n), 0, 0)
ssbn = 0
for i in range(num_groups):
ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i]
totaln = np.sum(n, dtype=float)
h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
df = num_groups - 1
h /= ties
return KruskalResult(h, distributions.chi2.sf(h, df))
FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
('statistic', 'pvalue'))
def friedmanchisquare(*args):
"""
Compute the Friedman test for repeated measurements.
The Friedman test tests the null hypothesis that repeated measurements of
the same individuals have the same distribution. It is often used
to test for consistency among measurements obtained in different ways.
For example, if two measurement techniques are used on the same set of
individuals, the Friedman test can be used to determine if the two
measurement techniques are consistent.
Parameters
----------
measurements1, measurements2, measurements3... : array_like
Arrays of measurements. All of the arrays must have the same number
of elements. At least 3 sets of measurements must be given.
Returns
-------
statistic : float
The test statistic, correcting for ties.
pvalue : float
The associated p-value assuming that the test statistic has a chi
squared distribution.
Notes
-----
Due to the assumption that the test statistic has a chi squared
distribution, the p-value is only reliable for n > 10 and more than
6 repeated measurements.
References
----------
.. [1] https://en.wikipedia.org/wiki/Friedman_test
"""
k = len(args)
if k < 3:
raise ValueError('Less than 3 levels. Friedman test not appropriate.')
n = len(args[0])
for i in range(1, k):
if len(args[i]) != n:
raise ValueError('Unequal N in friedmanchisquare. Aborting.')
# Rank data
data = np.vstack(args).T
data = data.astype(float)
for i in range(len(data)):
data[i] = rankdata(data[i])
# Handle ties
ties = 0
for i in range(len(data)):
replist, repnum = find_repeats(array(data[i]))
for t in repnum:
ties += t * (t*t - 1)
c = 1 - ties / (k*(k*k - 1)*n)
ssbn = np.sum(data.sum(axis=0)**2)
chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c
return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))
BrunnerMunzelResult = namedtuple('BrunnerMunzelResult',
('statistic', 'pvalue'))
def brunnermunzel(x, y, alternative="two-sided", distribution="t",
nan_policy='propagate'):
"""
Compute the Brunner-Munzel test on samples x and y.
The Brunner-Munzel test is a nonparametric test of the null hypothesis that
when values are taken one by one from each group, the probabilities of
getting large values in both groups are equal.
Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
assumption of equivariance of two groups. Note that this does not assume
the distributions are same. This test works on two independent samples,
which may have different sizes.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
distribution : {'t', 'normal'}, optional
Defines how to get the p-value.
The following options are available (default is 't'):
* 't': get the p-value by t-distribution
* 'normal': get the p-value by standard normal distribution.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Brunner-Munzer W statistic.
pvalue : float
p-value assuming an t distribution. One-sided or
two-sided, depending on the choice of `alternative` and `distribution`.
See Also
--------
mannwhitneyu : Mann-Whitney rank test on two samples.
Notes
-----
Brunner and Munzel recommended to estimate the p-value by t-distribution
when the size of data is 50 or less. If the size is lower than 10, it would
be better to use permuted Brunner Munzel test (see [2]_).
References
----------
.. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher
problem: Asymptotic theory and a small-sample approximation".
Biometrical Journal. Vol. 42(2000): 17-25.
.. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the
non-parametric Behrens-Fisher problem". Computational Statistics and
Data Analysis. Vol. 51(2007): 5192-5204.
Examples
--------
>>> from scipy import stats
>>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
>>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
>>> w, p_value = stats.brunnermunzel(x1, x2)
>>> w
3.1374674823029505
>>> p_value
0.0057862086661515377
"""
x = np.asarray(x)
y = np.asarray(y)
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == "omit" or npy == "omit":
nan_policy = "omit"
if contains_nan and nan_policy == "propagate":
return BrunnerMunzelResult(np.nan, np.nan)
elif contains_nan and nan_policy == "omit":
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
return mstats_basic.brunnermunzel(x, y, alternative, distribution)
nx = len(x)
ny = len(y)
if nx == 0 or ny == 0:
return BrunnerMunzelResult(np.nan, np.nan)
rankc = rankdata(np.concatenate((x, y)))
rankcx = rankc[0:nx]
rankcy = rankc[nx:nx+ny]
rankcx_mean = np.mean(rankcx)
rankcy_mean = np.mean(rankcy)
rankx = rankdata(x)
ranky = rankdata(y)
rankx_mean = np.mean(rankx)
ranky_mean = np.mean(ranky)
Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
Sx /= nx - 1
Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
Sy /= ny - 1
wbfn = nx * ny * (rankcy_mean - rankcx_mean)
wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
if distribution == "t":
df_numer = np.power(nx * Sx + ny * Sy, 2.0)
df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
df = df_numer / df_denom
p = distributions.t.cdf(wbfn, df)
elif distribution == "normal":
p = distributions.norm.cdf(wbfn)
else:
raise ValueError(
"distribution should be 't' or 'normal'")
if alternative == "greater":
pass
elif alternative == "less":
p = 1 - p
elif alternative == "two-sided":
p = 2 * np.min([p, 1-p])
else:
raise ValueError(
"alternative should be 'less', 'greater' or 'two-sided'")
return BrunnerMunzelResult(wbfn, p)
def combine_pvalues(pvalues, method='fisher', weights=None):
"""
Combine p-values from independent tests bearing upon the same hypothesis.
Parameters
----------
pvalues : array_like, 1-D
Array of p-values assumed to come from independent tests.
method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}, optional
Name of method to use to combine p-values.
The following methods are available (default is 'fisher'):
* 'fisher': Fisher's method (Fisher's combined probability test), the
sum of the logarithm of the p-values
* 'pearson': Pearson's method (similar to Fisher's but uses sum of the
complement of the p-values inside the logarithms)
* 'tippett': Tippett's method (minimum of p-values)
* 'stouffer': Stouffer's Z-score method
* 'mudholkar_george': the difference of Fisher's and Pearson's methods
divided by 2
weights : array_like, 1-D, optional
Optional array of weights used only for Stouffer's Z-score method.
Returns
-------
statistic: float
The statistic calculated by the specified method.
pval: float
The combined p-value.
Notes
-----
Fisher's method (also known as Fisher's combined probability test) [1]_ uses
a chi-squared statistic to compute a combined p-value. The closely related
Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The
advantage of Stouffer's method is that it is straightforward to introduce
weights, which can make Stouffer's method more powerful than Fisher's
method when the p-values are from studies of different size [6]_ [7]_.
The Pearson's method uses :math:`log(1-p_i)` inside the sum whereas Fisher's
method uses :math:`log(p_i)` [4]_. For Fisher's and Pearson's method, the
sum of the logarithms is multiplied by -2 in the implementation. This
quantity has a chi-square distribution that determines the p-value. The
`mudholkar_george` method is the difference of the Fisher's and Pearson's
test statistics, each of which include the -2 factor [4]_. However, the
`mudholkar_george` method does not include these -2 factors. The test
statistic of `mudholkar_george` is the sum of logisitic random variables and
equation 3.6 in [3]_ is used to approximate the p-value based on Student's
t-distribution.
Fisher's method may be extended to combine p-values from dependent tests
[5]_. Extensions such as Brown's method and Kost's method are not currently
implemented.
.. versionadded:: 0.15.0
References
----------
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_method
.. [2] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method
.. [3] George, E. O., and G. S. Mudholkar. "On the convolution of logistic
random variables." Metrika 30.1 (1983): 1-13.
.. [4] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of
combining p-values." Biometrika 105.1 (2018): 239-246.
.. [5] Whitlock, M. C. "Combining probability from independent tests: the
weighted Z-method is superior to Fisher's approach." Journal of
Evolutionary Biology 18, no. 5 (2005): 1368-1373.
.. [6] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
for combining probabilities in meta-analysis." Journal of
Evolutionary Biology 24, no. 8 (2011): 1836-1841.
.. [7] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method
"""
pvalues = np.asarray(pvalues)
if pvalues.ndim != 1:
raise ValueError("pvalues is not 1-D")
if method == 'fisher':
statistic = -2 * np.sum(np.log(pvalues))
pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
elif method == 'pearson':
statistic = -2 * np.sum(np.log1p(-pvalues))
pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
elif method == 'mudholkar_george':
normalizing_factor = np.sqrt(3/len(pvalues))/np.pi
statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues))
nu = 5 * len(pvalues) + 4
approx_factor = np.sqrt(nu / (nu - 2))
pval = distributions.t.sf(statistic * normalizing_factor * approx_factor, nu)
elif method == 'tippett':
statistic = np.min(pvalues)
pval = distributions.beta.sf(statistic, 1, len(pvalues))
elif method == 'stouffer':
if weights is None:
weights = np.ones_like(pvalues)
elif len(weights) != len(pvalues):
raise ValueError("pvalues and weights must be of the same size.")
weights = np.asarray(weights)
if weights.ndim != 1:
raise ValueError("weights is not 1-D")
Zi = distributions.norm.isf(pvalues)
statistic = np.dot(weights, Zi) / np.linalg.norm(weights)
pval = distributions.norm.sf(statistic)
else:
raise ValueError(
"Invalid method '%s'. Options are 'fisher', 'pearson', \
'mudholkar_george', 'tippett', 'or 'stouffer'", method)
return (statistic, pval)
#####################################
# STATISTICAL DISTANCES #
#####################################
def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute the first Wasserstein distance between two 1D distributions.
This distance is also known as the earth mover's distance, since it can be
seen as the minimum amount of "work" required to transform :math:`u` into
:math:`v`, where "work" is measured as the amount of distribution weight
that must be moved, multiplied by the distance it has to be moved.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The first Wasserstein distance between the distributions :math:`u` and
:math:`v` is:
.. math::
l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times
\mathbb{R}} |x-y| \mathrm{d} \pi (x, y)
where :math:`\Gamma (u, v)` is the set of (probability) distributions on
:math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and
:math:`v` on the first and second factors respectively.
If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and
:math:`v`, this distance also equals to:
.. math::
l_1(u, v) = \int_{-\infty}^{+\infty} |U-V|
See [2]_ for a proof of the equivalence of both definitions.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric
.. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related
Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`.
Examples
--------
>>> from scipy.stats import wasserstein_distance
>>> wasserstein_distance([0, 1, 3], [5, 6, 8])
5.0
>>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
0.25
>>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
4.0781331438047861
"""
return _cdf_distance(1, u_values, v_values, u_weights, v_weights)
def energy_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute the energy distance between two 1D distributions.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The energy distance between two distributions :math:`u` and :math:`v`, whose
respective CDFs are :math:`U` and :math:`V`, equals to:
.. math::
D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| -
\mathbb E|Y - Y'| \right)^{1/2}
where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are
independent random variables whose probability distribution is :math:`u`
(resp. :math:`v`).
As shown in [2]_, for one-dimensional real-valued variables, the energy
distance is linked to the non-distribution-free version of the Cramer-von
Mises distance:
.. math::
D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2
\right)^{1/2}
Note that the common Cramer-von Mises criterion uses the distribution-free
version of the distance. See [2]_ (section 2), for more details about both
versions of the distance.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance
.. [2] Szekely "E-statistics: The energy of statistical samples." Bowling
Green State University, Department of Mathematics and Statistics,
Technical Report 02-16 (2002).
.. [3] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews:
Computational Statistics, 8(1):27-38 (2015).
.. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
Examples
--------
>>> from scipy.stats import energy_distance
>>> energy_distance([0], [2])
2.0000000000000004
>>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
1.0000000000000002
>>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
0.88003340976158217
"""
return np.sqrt(2) * _cdf_distance(2, u_values, v_values,
u_weights, v_weights)
def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute, between two one-dimensional distributions :math:`u` and
:math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the
statistical distance that is defined as:
.. math::
l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p}
p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2
gives the energy distance.
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
"""
u_values, u_weights = _validate_distribution(u_values, u_weights)
v_values, v_weights = _validate_distribution(v_values, v_weights)
u_sorter = np.argsort(u_values)
v_sorter = np.argsort(v_values)
all_values = np.concatenate((u_values, v_values))
all_values.sort(kind='mergesort')
# Compute the differences between pairs of successive values of u and v.
deltas = np.diff(all_values)
# Get the respective positions of the values of u and v among the values of
# both distributions.
u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right')
v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right')
# Calculate the CDFs of u and v using their weights, if specified.
if u_weights is None:
u_cdf = u_cdf_indices / u_values.size
else:
u_sorted_cumweights = np.concatenate(([0],
np.cumsum(u_weights[u_sorter])))
u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1]
if v_weights is None:
v_cdf = v_cdf_indices / v_values.size
else:
v_sorted_cumweights = np.concatenate(([0],
np.cumsum(v_weights[v_sorter])))
v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1]
# Compute the value of the integral based on the CDFs.
# If p = 1 or p = 2, we avoid using np.power, which introduces an overhead
# of about 15%.
if p == 1:
return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas))
if p == 2:
return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas)))
return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p),
deltas)), 1/p)
def _validate_distribution(values, weights):
"""
Validate the values and weights from a distribution input of `cdf_distance`
and return them as ndarray objects.
Parameters
----------
values : array_like
Values observed in the (empirical) distribution.
weights : array_like
Weight for each value.
Returns
-------
values : ndarray
Values as ndarray.
weights : ndarray
Weights as ndarray.
"""
# Validate the value array.
values = np.asarray(values, dtype=float)
if len(values) == 0:
raise ValueError("Distribution can't be empty.")
# Validate the weight array, if specified.
if weights is not None:
weights = np.asarray(weights, dtype=float)
if len(weights) != len(values):
raise ValueError('Value and weight array-likes for the same '
'empirical distribution must be of the same size.')
if np.any(weights < 0):
raise ValueError('All weights must be non-negative.')
if not 0 < np.sum(weights) < np.inf:
raise ValueError('Weight array-like sum must be positive and '
'finite. Set as None for an equal distribution of '
'weight.')
return values, weights
return values, None
#####################################
# SUPPORT FUNCTIONS #
#####################################
RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))
def find_repeats(arr):
"""
Find repeats and repeat counts.
Parameters
----------
arr : array_like
Input array. This is cast to float64.
Returns
-------
values : ndarray
The unique values from the (flattened) input that are repeated.
counts : ndarray
Number of times the corresponding 'value' is repeated.
Notes
-----
In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
difference is that `find_repeats` only returns repeated values.
Examples
--------
>>> from scipy import stats
>>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
RepeatedResults(values=array([2.]), counts=array([4]))
>>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
"""
# Note: always copies.
return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))
def _sum_of_squares(a, axis=0):
"""
Square each element of the input array, and return the sum(s) of that.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
sum_of_squares : ndarray
The sum along the given axis for (a**2).
See Also
--------
_square_of_sums : The square(s) of the sum(s) (the opposite of
`_sum_of_squares`).
"""
a, axis = _chk_asarray(a, axis)
return np.sum(a*a, axis)
def _square_of_sums(a, axis=0):
"""
Sum elements of the input array, and return the square(s) of that sum.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
square_of_sums : float or ndarray
The square of the sum over `axis`.
See Also
--------
_sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
"""
a, axis = _chk_asarray(a, axis)
s = np.sum(a, axis)
if not np.isscalar(s):
return s.astype(float) * s
else:
return float(s) * s
def rankdata(a, method='average', *, axis=None):
"""
Assign ranks to data, dealing with ties appropriately.
By default (``axis=None``), the data array is first flattened, and a flat
array of ranks is returned. Separately reshape the rank array to the
shape of the data array if desired (see Examples).
Ranks begin at 1. The `method` argument controls how ranks are assigned
to equal values. See [1]_ for further discussion of ranking methods.
Parameters
----------
a : array_like
The array of values to be ranked.
method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional
The method used to assign ranks to tied elements.
The following methods are available (default is 'average'):
* 'average': The average of the ranks that would have been assigned to
all the tied values is assigned to each value.
* 'min': The minimum of the ranks that would have been assigned to all
the tied values is assigned to each value. (This is also
referred to as "competition" ranking.)
* 'max': The maximum of the ranks that would have been assigned to all
the tied values is assigned to each value.
* 'dense': Like 'min', but the rank of the next highest element is
assigned the rank immediately after those assigned to the tied
elements.
* 'ordinal': All values are given a distinct rank, corresponding to
the order that the values occur in `a`.
axis : {None, int}, optional
Axis along which to perform the ranking. If ``None``, the data array
is first flattened.
Returns
-------
ranks : ndarray
An array of size equal to the size of `a`, containing rank
scores.
References
----------
.. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking
Examples
--------
>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([ 1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([ 1, 2, 4, 2])
>>> rankdata([0, 2, 3, 2], method='max')
array([ 1, 3, 4, 3])
>>> rankdata([0, 2, 3, 2], method='dense')
array([ 1, 2, 3, 2])
>>> rankdata([0, 2, 3, 2], method='ordinal')
array([ 1, 2, 4, 3])
>>> rankdata([[0, 2], [3, 2]]).reshape(2,2)
array([[1. , 2.5],
[4. , 2.5]])
>>> rankdata([[0, 2, 2], [3, 2, 5]], axis=1)
array([[1. , 2.5, 2.5],
[2. , 1. , 3. ]])
"""
if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
raise ValueError('unknown method "{0}"'.format(method))
if axis is not None:
a = np.asarray(a)
if a.size == 0:
# The return values of `normalize_axis_index` are ignored. The
# call validates `axis`, even though we won't use it.
# use scipy._lib._util._normalize_axis_index when available
np.core.multiarray.normalize_axis_index(axis, a.ndim)
dt = np.float64 if method == 'average' else np.int_
return np.empty(a.shape, dtype=dt)
return np.apply_along_axis(rankdata, axis, a, method)
arr = np.ravel(np.asarray(a))
algo = 'mergesort' if method == 'ordinal' else 'quicksort'
sorter = np.argsort(arr, kind=algo)
inv = np.empty(sorter.size, dtype=np.intp)
inv[sorter] = np.arange(sorter.size, dtype=np.intp)
if method == 'ordinal':
return inv + 1
arr = arr[sorter]
obs = np.r_[True, arr[1:] != arr[:-1]]
dense = obs.cumsum()[inv]
if method == 'dense':
return dense
# cumulative counts of each unique value
count = np.r_[np.nonzero(obs)[0], len(obs)]
if method == 'max':
return count[dense]
if method == 'min':
return count[dense - 1] + 1
# average method
return .5 * (count[dense] + count[dense - 1] + 1)