Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
6.6 KiB
181 lines
6.6 KiB
"""unit tests for sparse utility functions"""
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_equal, suppress_warnings
|
|
from pytest import raises as assert_raises
|
|
from scipy.sparse import sputils
|
|
from scipy.sparse.sputils import matrix
|
|
|
|
|
|
class TestSparseUtils(object):
|
|
|
|
def test_upcast(self):
|
|
assert_equal(sputils.upcast('intc'), np.intc)
|
|
assert_equal(sputils.upcast('int32', 'float32'), np.float64)
|
|
assert_equal(sputils.upcast('bool', complex, float), np.complex128)
|
|
assert_equal(sputils.upcast('i', 'd'), np.float64)
|
|
|
|
def test_getdtype(self):
|
|
A = np.array([1], dtype='int8')
|
|
|
|
assert_equal(sputils.getdtype(None, default=float), float)
|
|
assert_equal(sputils.getdtype(None, a=A), np.int8)
|
|
|
|
def test_isscalarlike(self):
|
|
assert_equal(sputils.isscalarlike(3.0), True)
|
|
assert_equal(sputils.isscalarlike(-4), True)
|
|
assert_equal(sputils.isscalarlike(2.5), True)
|
|
assert_equal(sputils.isscalarlike(1 + 3j), True)
|
|
assert_equal(sputils.isscalarlike(np.array(3)), True)
|
|
assert_equal(sputils.isscalarlike("16"), True)
|
|
|
|
assert_equal(sputils.isscalarlike(np.array([3])), False)
|
|
assert_equal(sputils.isscalarlike([[3]]), False)
|
|
assert_equal(sputils.isscalarlike((1,)), False)
|
|
assert_equal(sputils.isscalarlike((1, 2)), False)
|
|
|
|
def test_isintlike(self):
|
|
assert_equal(sputils.isintlike(-4), True)
|
|
assert_equal(sputils.isintlike(np.array(3)), True)
|
|
assert_equal(sputils.isintlike(np.array([3])), False)
|
|
with suppress_warnings() as sup:
|
|
sup.filter(DeprecationWarning,
|
|
"Inexact indices into sparse matrices are deprecated")
|
|
assert_equal(sputils.isintlike(3.0), True)
|
|
|
|
assert_equal(sputils.isintlike(2.5), False)
|
|
assert_equal(sputils.isintlike(1 + 3j), False)
|
|
assert_equal(sputils.isintlike((1,)), False)
|
|
assert_equal(sputils.isintlike((1, 2)), False)
|
|
|
|
def test_isshape(self):
|
|
assert_equal(sputils.isshape((1, 2)), True)
|
|
assert_equal(sputils.isshape((5, 2)), True)
|
|
|
|
assert_equal(sputils.isshape((1.5, 2)), False)
|
|
assert_equal(sputils.isshape((2, 2, 2)), False)
|
|
assert_equal(sputils.isshape(([2], 2)), False)
|
|
assert_equal(sputils.isshape((-1, 2), nonneg=False),True)
|
|
assert_equal(sputils.isshape((2, -1), nonneg=False),True)
|
|
assert_equal(sputils.isshape((-1, 2), nonneg=True),False)
|
|
assert_equal(sputils.isshape((2, -1), nonneg=True),False)
|
|
|
|
def test_issequence(self):
|
|
assert_equal(sputils.issequence((1,)), True)
|
|
assert_equal(sputils.issequence((1, 2, 3)), True)
|
|
assert_equal(sputils.issequence([1]), True)
|
|
assert_equal(sputils.issequence([1, 2, 3]), True)
|
|
assert_equal(sputils.issequence(np.array([1, 2, 3])), True)
|
|
|
|
assert_equal(sputils.issequence(np.array([[1], [2], [3]])), False)
|
|
assert_equal(sputils.issequence(3), False)
|
|
|
|
def test_ismatrix(self):
|
|
assert_equal(sputils.ismatrix(((),)), True)
|
|
assert_equal(sputils.ismatrix([[1], [2]]), True)
|
|
assert_equal(sputils.ismatrix(np.arange(3)[None]), True)
|
|
|
|
assert_equal(sputils.ismatrix([1, 2]), False)
|
|
assert_equal(sputils.ismatrix(np.arange(3)), False)
|
|
assert_equal(sputils.ismatrix([[[1]]]), False)
|
|
assert_equal(sputils.ismatrix(3), False)
|
|
|
|
def test_isdense(self):
|
|
assert_equal(sputils.isdense(np.array([1])), True)
|
|
assert_equal(sputils.isdense(matrix([1])), True)
|
|
|
|
def test_validateaxis(self):
|
|
assert_raises(TypeError, sputils.validateaxis, (0, 1))
|
|
assert_raises(TypeError, sputils.validateaxis, 1.5)
|
|
assert_raises(ValueError, sputils.validateaxis, 3)
|
|
|
|
# These function calls should not raise errors
|
|
for axis in (-2, -1, 0, 1, None):
|
|
sputils.validateaxis(axis)
|
|
|
|
def test_get_index_dtype(self):
|
|
imax = np.iinfo(np.int32).max
|
|
too_big = imax + 1
|
|
|
|
# Check that uint32's with no values too large doesn't return
|
|
# int64
|
|
a1 = np.ones(90, dtype='uint32')
|
|
a2 = np.ones(90, dtype='uint32')
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)),
|
|
np.dtype('int32')
|
|
)
|
|
|
|
# Check that if we can not convert but all values are less than or
|
|
# equal to max that we can just convert to int32
|
|
a1[-1] = imax
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)),
|
|
np.dtype('int32')
|
|
)
|
|
|
|
# Check that if it can not convert directly and the contents are
|
|
# too large that we return int64
|
|
a1[-1] = too_big
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)),
|
|
np.dtype('int64')
|
|
)
|
|
|
|
# test that if can not convert and didn't specify to check_contents
|
|
# we return int64
|
|
a1 = np.ones(89, dtype='uint32')
|
|
a2 = np.ones(89, dtype='uint32')
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype((a1, a2))),
|
|
np.dtype('int64')
|
|
)
|
|
|
|
# Check that even if we have arrays that can be converted directly
|
|
# that if we specify a maxval directly it takes precedence
|
|
a1 = np.ones(12, dtype='uint32')
|
|
a2 = np.ones(12, dtype='uint32')
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype(
|
|
(a1, a2), maxval=too_big, check_contents=True
|
|
)),
|
|
np.dtype('int64')
|
|
)
|
|
|
|
# Check that an array with a too max size and maxval set
|
|
# still returns int64
|
|
a1[-1] = too_big
|
|
assert_equal(
|
|
np.dtype(sputils.get_index_dtype((a1, a2), maxval=too_big)),
|
|
np.dtype('int64')
|
|
)
|
|
|
|
def test_check_shape_overflow(self):
|
|
new_shape = sputils.check_shape([(10, -1)], (65535, 131070))
|
|
assert_equal(new_shape, (10, 858967245))
|
|
|
|
def test_matrix(self):
|
|
a = [[1, 2, 3]]
|
|
b = np.array(a)
|
|
|
|
assert isinstance(sputils.matrix(a), np.matrix)
|
|
assert isinstance(sputils.matrix(b), np.matrix)
|
|
|
|
c = sputils.matrix(b)
|
|
c[:, :] = 123
|
|
assert_equal(b, a)
|
|
|
|
c = sputils.matrix(b, copy=False)
|
|
c[:, :] = 123
|
|
assert_equal(b, [[123, 123, 123]])
|
|
|
|
def test_asmatrix(self):
|
|
a = [[1, 2, 3]]
|
|
b = np.array(a)
|
|
|
|
assert isinstance(sputils.asmatrix(a), np.matrix)
|
|
assert isinstance(sputils.asmatrix(b), np.matrix)
|
|
|
|
c = sputils.asmatrix(b)
|
|
c[:, :] = 123
|
|
assert_equal(b, [[123, 123, 123]])
|
|
|