1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/integrate/tests/test_integrate.py

830 lines
24 KiB

# Authors: Nils Wagner, Ed Schofield, Pauli Virtanen, John Travers
"""
Tests for numerical integration.
"""
import numpy as np
from numpy import (arange, zeros, array, dot, sqrt, cos, sin, eye, pi, exp,
allclose)
from numpy.testing import (
assert_, assert_array_almost_equal,
assert_allclose, assert_array_equal, assert_equal, assert_warns)
from pytest import raises as assert_raises
from scipy.integrate import odeint, ode, complex_ode
#------------------------------------------------------------------------------
# Test ODE integrators
#------------------------------------------------------------------------------
class TestOdeint(object):
# Check integrate.odeint
def _do_problem(self, problem):
t = arange(0.0, problem.stop_t, 0.05)
# Basic case
z, infodict = odeint(problem.f, problem.z0, t, full_output=True)
assert_(problem.verify(z, t))
# Use tfirst=True
z, infodict = odeint(lambda t, y: problem.f(y, t), problem.z0, t,
full_output=True, tfirst=True)
assert_(problem.verify(z, t))
if hasattr(problem, 'jac'):
# Use Dfun
z, infodict = odeint(problem.f, problem.z0, t, Dfun=problem.jac,
full_output=True)
assert_(problem.verify(z, t))
# Use Dfun and tfirst=True
z, infodict = odeint(lambda t, y: problem.f(y, t), problem.z0, t,
Dfun=lambda t, y: problem.jac(y, t),
full_output=True, tfirst=True)
assert_(problem.verify(z, t))
def test_odeint(self):
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.cmplx:
continue
self._do_problem(problem)
class TestODEClass(object):
ode_class = None # Set in subclass.
def _do_problem(self, problem, integrator, method='adams'):
# ode has callback arguments in different order than odeint
f = lambda t, z: problem.f(z, t)
jac = None
if hasattr(problem, 'jac'):
jac = lambda t, z: problem.jac(z, t)
integrator_params = {}
if problem.lband is not None or problem.uband is not None:
integrator_params['uband'] = problem.uband
integrator_params['lband'] = problem.lband
ig = self.ode_class(f, jac)
ig.set_integrator(integrator,
atol=problem.atol/10,
rtol=problem.rtol/10,
method=method,
**integrator_params)
ig.set_initial_value(problem.z0, t=0.0)
z = ig.integrate(problem.stop_t)
assert_array_equal(z, ig.y)
assert_(ig.successful(), (problem, method))
assert_(ig.get_return_code() > 0, (problem, method))
assert_(problem.verify(array([z]), problem.stop_t), (problem, method))
class TestOde(TestODEClass):
ode_class = ode
def test_vode(self):
# Check the vode solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.cmplx:
continue
if not problem.stiff:
self._do_problem(problem, 'vode', 'adams')
self._do_problem(problem, 'vode', 'bdf')
def test_zvode(self):
# Check the zvode solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if not problem.stiff:
self._do_problem(problem, 'zvode', 'adams')
self._do_problem(problem, 'zvode', 'bdf')
def test_lsoda(self):
# Check the lsoda solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.cmplx:
continue
self._do_problem(problem, 'lsoda')
def test_dopri5(self):
# Check the dopri5 solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.cmplx:
continue
if problem.stiff:
continue
if hasattr(problem, 'jac'):
continue
self._do_problem(problem, 'dopri5')
def test_dop853(self):
# Check the dop853 solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.cmplx:
continue
if problem.stiff:
continue
if hasattr(problem, 'jac'):
continue
self._do_problem(problem, 'dop853')
def test_concurrent_fail(self):
for sol in ('vode', 'zvode', 'lsoda'):
f = lambda t, y: 1.0
r = ode(f).set_integrator(sol)
r.set_initial_value(0, 0)
r2 = ode(f).set_integrator(sol)
r2.set_initial_value(0, 0)
r.integrate(r.t + 0.1)
r2.integrate(r2.t + 0.1)
assert_raises(RuntimeError, r.integrate, r.t + 0.1)
def test_concurrent_ok(self):
f = lambda t, y: 1.0
for k in range(3):
for sol in ('vode', 'zvode', 'lsoda', 'dopri5', 'dop853'):
r = ode(f).set_integrator(sol)
r.set_initial_value(0, 0)
r2 = ode(f).set_integrator(sol)
r2.set_initial_value(0, 0)
r.integrate(r.t + 0.1)
r2.integrate(r2.t + 0.1)
r2.integrate(r2.t + 0.1)
assert_allclose(r.y, 0.1)
assert_allclose(r2.y, 0.2)
for sol in ('dopri5', 'dop853'):
r = ode(f).set_integrator(sol)
r.set_initial_value(0, 0)
r2 = ode(f).set_integrator(sol)
r2.set_initial_value(0, 0)
r.integrate(r.t + 0.1)
r.integrate(r.t + 0.1)
r2.integrate(r2.t + 0.1)
r.integrate(r.t + 0.1)
r2.integrate(r2.t + 0.1)
assert_allclose(r.y, 0.3)
assert_allclose(r2.y, 0.2)
class TestComplexOde(TestODEClass):
ode_class = complex_ode
def test_vode(self):
# Check the vode solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if not problem.stiff:
self._do_problem(problem, 'vode', 'adams')
else:
self._do_problem(problem, 'vode', 'bdf')
def test_lsoda(self):
# Check the lsoda solver
for problem_cls in PROBLEMS:
problem = problem_cls()
self._do_problem(problem, 'lsoda')
def test_dopri5(self):
# Check the dopri5 solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.stiff:
continue
if hasattr(problem, 'jac'):
continue
self._do_problem(problem, 'dopri5')
def test_dop853(self):
# Check the dop853 solver
for problem_cls in PROBLEMS:
problem = problem_cls()
if problem.stiff:
continue
if hasattr(problem, 'jac'):
continue
self._do_problem(problem, 'dop853')
class TestSolout(object):
# Check integrate.ode correctly handles solout for dopri5 and dop853
def _run_solout_test(self, integrator):
# Check correct usage of solout
ts = []
ys = []
t0 = 0.0
tend = 10.0
y0 = [1.0, 2.0]
def solout(t, y):
ts.append(t)
ys.append(y.copy())
def rhs(t, y):
return [y[0] + y[1], -y[1]**2]
ig = ode(rhs).set_integrator(integrator)
ig.set_solout(solout)
ig.set_initial_value(y0, t0)
ret = ig.integrate(tend)
assert_array_equal(ys[0], y0)
assert_array_equal(ys[-1], ret)
assert_equal(ts[0], t0)
assert_equal(ts[-1], tend)
def test_solout(self):
for integrator in ('dopri5', 'dop853'):
self._run_solout_test(integrator)
def _run_solout_after_initial_test(self, integrator):
# Check if solout works even if it is set after the initial value.
ts = []
ys = []
t0 = 0.0
tend = 10.0
y0 = [1.0, 2.0]
def solout(t, y):
ts.append(t)
ys.append(y.copy())
def rhs(t, y):
return [y[0] + y[1], -y[1]**2]
ig = ode(rhs).set_integrator(integrator)
ig.set_initial_value(y0, t0)
ig.set_solout(solout)
ret = ig.integrate(tend)
assert_array_equal(ys[0], y0)
assert_array_equal(ys[-1], ret)
assert_equal(ts[0], t0)
assert_equal(ts[-1], tend)
def test_solout_after_initial(self):
for integrator in ('dopri5', 'dop853'):
self._run_solout_after_initial_test(integrator)
def _run_solout_break_test(self, integrator):
# Check correct usage of stopping via solout
ts = []
ys = []
t0 = 0.0
tend = 10.0
y0 = [1.0, 2.0]
def solout(t, y):
ts.append(t)
ys.append(y.copy())
if t > tend/2.0:
return -1
def rhs(t, y):
return [y[0] + y[1], -y[1]**2]
ig = ode(rhs).set_integrator(integrator)
ig.set_solout(solout)
ig.set_initial_value(y0, t0)
ret = ig.integrate(tend)
assert_array_equal(ys[0], y0)
assert_array_equal(ys[-1], ret)
assert_equal(ts[0], t0)
assert_(ts[-1] > tend/2.0)
assert_(ts[-1] < tend)
def test_solout_break(self):
for integrator in ('dopri5', 'dop853'):
self._run_solout_break_test(integrator)
class TestComplexSolout(object):
# Check integrate.ode correctly handles solout for dopri5 and dop853
def _run_solout_test(self, integrator):
# Check correct usage of solout
ts = []
ys = []
t0 = 0.0
tend = 20.0
y0 = [0.0]
def solout(t, y):
ts.append(t)
ys.append(y.copy())
def rhs(t, y):
return [1.0/(t - 10.0 - 1j)]
ig = complex_ode(rhs).set_integrator(integrator)
ig.set_solout(solout)
ig.set_initial_value(y0, t0)
ret = ig.integrate(tend)
assert_array_equal(ys[0], y0)
assert_array_equal(ys[-1], ret)
assert_equal(ts[0], t0)
assert_equal(ts[-1], tend)
def test_solout(self):
for integrator in ('dopri5', 'dop853'):
self._run_solout_test(integrator)
def _run_solout_break_test(self, integrator):
# Check correct usage of stopping via solout
ts = []
ys = []
t0 = 0.0
tend = 20.0
y0 = [0.0]
def solout(t, y):
ts.append(t)
ys.append(y.copy())
if t > tend/2.0:
return -1
def rhs(t, y):
return [1.0/(t - 10.0 - 1j)]
ig = complex_ode(rhs).set_integrator(integrator)
ig.set_solout(solout)
ig.set_initial_value(y0, t0)
ret = ig.integrate(tend)
assert_array_equal(ys[0], y0)
assert_array_equal(ys[-1], ret)
assert_equal(ts[0], t0)
assert_(ts[-1] > tend/2.0)
assert_(ts[-1] < tend)
def test_solout_break(self):
for integrator in ('dopri5', 'dop853'):
self._run_solout_break_test(integrator)
#------------------------------------------------------------------------------
# Test problems
#------------------------------------------------------------------------------
class ODE:
"""
ODE problem
"""
stiff = False
cmplx = False
stop_t = 1
z0 = []
lband = None
uband = None
atol = 1e-6
rtol = 1e-5
class SimpleOscillator(ODE):
r"""
Free vibration of a simple oscillator::
m \ddot{u} + k u = 0, u(0) = u_0 \dot{u}(0) \dot{u}_0
Solution::
u(t) = u_0*cos(sqrt(k/m)*t)+\dot{u}_0*sin(sqrt(k/m)*t)/sqrt(k/m)
"""
stop_t = 1 + 0.09
z0 = array([1.0, 0.1], float)
k = 4.0
m = 1.0
def f(self, z, t):
tmp = zeros((2, 2), float)
tmp[0, 1] = 1.0
tmp[1, 0] = -self.k / self.m
return dot(tmp, z)
def verify(self, zs, t):
omega = sqrt(self.k / self.m)
u = self.z0[0]*cos(omega*t) + self.z0[1]*sin(omega*t)/omega
return allclose(u, zs[:, 0], atol=self.atol, rtol=self.rtol)
class ComplexExp(ODE):
r"""The equation :lm:`\dot u = i u`"""
stop_t = 1.23*pi
z0 = exp([1j, 2j, 3j, 4j, 5j])
cmplx = True
def f(self, z, t):
return 1j*z
def jac(self, z, t):
return 1j*eye(5)
def verify(self, zs, t):
u = self.z0 * exp(1j*t)
return allclose(u, zs, atol=self.atol, rtol=self.rtol)
class Pi(ODE):
r"""Integrate 1/(t + 1j) from t=-10 to t=10"""
stop_t = 20
z0 = [0]
cmplx = True
def f(self, z, t):
return array([1./(t - 10 + 1j)])
def verify(self, zs, t):
u = -2j * np.arctan(10)
return allclose(u, zs[-1, :], atol=self.atol, rtol=self.rtol)
class CoupledDecay(ODE):
r"""
3 coupled decays suited for banded treatment
(banded mode makes it necessary when N>>3)
"""
stiff = True
stop_t = 0.5
z0 = [5.0, 7.0, 13.0]
lband = 1
uband = 0
lmbd = [0.17, 0.23, 0.29] # fictitious decay constants
def f(self, z, t):
lmbd = self.lmbd
return np.array([-lmbd[0]*z[0],
-lmbd[1]*z[1] + lmbd[0]*z[0],
-lmbd[2]*z[2] + lmbd[1]*z[1]])
def jac(self, z, t):
# The full Jacobian is
#
# [-lmbd[0] 0 0 ]
# [ lmbd[0] -lmbd[1] 0 ]
# [ 0 lmbd[1] -lmbd[2]]
#
# The lower and upper bandwidths are lband=1 and uband=0, resp.
# The representation of this array in packed format is
#
# [-lmbd[0] -lmbd[1] -lmbd[2]]
# [ lmbd[0] lmbd[1] 0 ]
lmbd = self.lmbd
j = np.zeros((self.lband + self.uband + 1, 3), order='F')
def set_j(ri, ci, val):
j[self.uband + ri - ci, ci] = val
set_j(0, 0, -lmbd[0])
set_j(1, 0, lmbd[0])
set_j(1, 1, -lmbd[1])
set_j(2, 1, lmbd[1])
set_j(2, 2, -lmbd[2])
return j
def verify(self, zs, t):
# Formulae derived by hand
lmbd = np.array(self.lmbd)
d10 = lmbd[1] - lmbd[0]
d21 = lmbd[2] - lmbd[1]
d20 = lmbd[2] - lmbd[0]
e0 = np.exp(-lmbd[0] * t)
e1 = np.exp(-lmbd[1] * t)
e2 = np.exp(-lmbd[2] * t)
u = np.vstack((
self.z0[0] * e0,
self.z0[1] * e1 + self.z0[0] * lmbd[0] / d10 * (e0 - e1),
self.z0[2] * e2 + self.z0[1] * lmbd[1] / d21 * (e1 - e2) +
lmbd[1] * lmbd[0] * self.z0[0] / d10 *
(1 / d20 * (e0 - e2) - 1 / d21 * (e1 - e2)))).transpose()
return allclose(u, zs, atol=self.atol, rtol=self.rtol)
PROBLEMS = [SimpleOscillator, ComplexExp, Pi, CoupledDecay]
#------------------------------------------------------------------------------
def f(t, x):
dxdt = [x[1], -x[0]]
return dxdt
def jac(t, x):
j = array([[0.0, 1.0],
[-1.0, 0.0]])
return j
def f1(t, x, omega):
dxdt = [omega*x[1], -omega*x[0]]
return dxdt
def jac1(t, x, omega):
j = array([[0.0, omega],
[-omega, 0.0]])
return j
def f2(t, x, omega1, omega2):
dxdt = [omega1*x[1], -omega2*x[0]]
return dxdt
def jac2(t, x, omega1, omega2):
j = array([[0.0, omega1],
[-omega2, 0.0]])
return j
def fv(t, x, omega):
dxdt = [omega[0]*x[1], -omega[1]*x[0]]
return dxdt
def jacv(t, x, omega):
j = array([[0.0, omega[0]],
[-omega[1], 0.0]])
return j
class ODECheckParameterUse(object):
"""Call an ode-class solver with several cases of parameter use."""
# solver_name must be set before tests can be run with this class.
# Set these in subclasses.
solver_name = ''
solver_uses_jac = False
def _get_solver(self, f, jac):
solver = ode(f, jac)
if self.solver_uses_jac:
solver.set_integrator(self.solver_name, atol=1e-9, rtol=1e-7,
with_jacobian=self.solver_uses_jac)
else:
# XXX Shouldn't set_integrator *always* accept the keyword arg
# 'with_jacobian', and perhaps raise an exception if it is set
# to True if the solver can't actually use it?
solver.set_integrator(self.solver_name, atol=1e-9, rtol=1e-7)
return solver
def _check_solver(self, solver):
ic = [1.0, 0.0]
solver.set_initial_value(ic, 0.0)
solver.integrate(pi)
assert_array_almost_equal(solver.y, [-1.0, 0.0])
def test_no_params(self):
solver = self._get_solver(f, jac)
self._check_solver(solver)
def test_one_scalar_param(self):
solver = self._get_solver(f1, jac1)
omega = 1.0
solver.set_f_params(omega)
if self.solver_uses_jac:
solver.set_jac_params(omega)
self._check_solver(solver)
def test_two_scalar_params(self):
solver = self._get_solver(f2, jac2)
omega1 = 1.0
omega2 = 1.0
solver.set_f_params(omega1, omega2)
if self.solver_uses_jac:
solver.set_jac_params(omega1, omega2)
self._check_solver(solver)
def test_vector_param(self):
solver = self._get_solver(fv, jacv)
omega = [1.0, 1.0]
solver.set_f_params(omega)
if self.solver_uses_jac:
solver.set_jac_params(omega)
self._check_solver(solver)
def test_warns_on_failure(self):
# Set nsteps small to ensure failure
solver = self._get_solver(f, jac)
solver.set_integrator(self.solver_name, nsteps=1)
ic = [1.0, 0.0]
solver.set_initial_value(ic, 0.0)
assert_warns(UserWarning, solver.integrate, pi)
class TestDOPRI5CheckParameterUse(ODECheckParameterUse):
solver_name = 'dopri5'
solver_uses_jac = False
class TestDOP853CheckParameterUse(ODECheckParameterUse):
solver_name = 'dop853'
solver_uses_jac = False
class TestVODECheckParameterUse(ODECheckParameterUse):
solver_name = 'vode'
solver_uses_jac = True
class TestZVODECheckParameterUse(ODECheckParameterUse):
solver_name = 'zvode'
solver_uses_jac = True
class TestLSODACheckParameterUse(ODECheckParameterUse):
solver_name = 'lsoda'
solver_uses_jac = True
def test_odeint_trivial_time():
# Test that odeint succeeds when given a single time point
# and full_output=True. This is a regression test for gh-4282.
y0 = 1
t = [0]
y, info = odeint(lambda y, t: -y, y0, t, full_output=True)
assert_array_equal(y, np.array([[y0]]))
def test_odeint_banded_jacobian():
# Test the use of the `Dfun`, `ml` and `mu` options of odeint.
def func(y, t, c):
return c.dot(y)
def jac(y, t, c):
return c
def jac_transpose(y, t, c):
return c.T.copy(order='C')
def bjac_rows(y, t, c):
jac = np.row_stack((np.r_[0, np.diag(c, 1)],
np.diag(c),
np.r_[np.diag(c, -1), 0],
np.r_[np.diag(c, -2), 0, 0]))
return jac
def bjac_cols(y, t, c):
return bjac_rows(y, t, c).T.copy(order='C')
c = array([[-205, 0.01, 0.00, 0.0],
[0.1, -2.50, 0.02, 0.0],
[1e-3, 0.01, -2.0, 0.01],
[0.00, 0.00, 0.1, -1.0]])
y0 = np.ones(4)
t = np.array([0, 5, 10, 100])
# Use the full Jacobian.
sol1, info1 = odeint(func, y0, t, args=(c,), full_output=True,
atol=1e-13, rtol=1e-11, mxstep=10000,
Dfun=jac)
# Use the transposed full Jacobian, with col_deriv=True.
sol2, info2 = odeint(func, y0, t, args=(c,), full_output=True,
atol=1e-13, rtol=1e-11, mxstep=10000,
Dfun=jac_transpose, col_deriv=True)
# Use the banded Jacobian.
sol3, info3 = odeint(func, y0, t, args=(c,), full_output=True,
atol=1e-13, rtol=1e-11, mxstep=10000,
Dfun=bjac_rows, ml=2, mu=1)
# Use the transposed banded Jacobian, with col_deriv=True.
sol4, info4 = odeint(func, y0, t, args=(c,), full_output=True,
atol=1e-13, rtol=1e-11, mxstep=10000,
Dfun=bjac_cols, ml=2, mu=1, col_deriv=True)
assert_allclose(sol1, sol2, err_msg="sol1 != sol2")
assert_allclose(sol1, sol3, atol=1e-12, err_msg="sol1 != sol3")
assert_allclose(sol3, sol4, err_msg="sol3 != sol4")
# Verify that the number of jacobian evaluations was the same for the
# calls of odeint with a full jacobian and with a banded jacobian. This is
# a regression test--there was a bug in the handling of banded jacobians
# that resulted in an incorrect jacobian matrix being passed to the LSODA
# code. That would cause errors or excessive jacobian evaluations.
assert_array_equal(info1['nje'], info2['nje'])
assert_array_equal(info3['nje'], info4['nje'])
# Test the use of tfirst
sol1ty, info1ty = odeint(lambda t, y, c: func(y, t, c), y0, t, args=(c,),
full_output=True, atol=1e-13, rtol=1e-11,
mxstep=10000,
Dfun=lambda t, y, c: jac(y, t, c), tfirst=True)
# The code should execute the exact same sequence of floating point
# calculations, so these should be exactly equal. We'll be safe and use
# a small tolerance.
assert_allclose(sol1, sol1ty, rtol=1e-12, err_msg="sol1 != sol1ty")
def test_odeint_errors():
def sys1d(x, t):
return -100*x
def bad1(x, t):
return 1.0/0
def bad2(x, t):
return "foo"
def bad_jac1(x, t):
return 1.0/0
def bad_jac2(x, t):
return [["foo"]]
def sys2d(x, t):
return [-100*x[0], -0.1*x[1]]
def sys2d_bad_jac(x, t):
return [[1.0/0, 0], [0, -0.1]]
assert_raises(ZeroDivisionError, odeint, bad1, 1.0, [0, 1])
assert_raises(ValueError, odeint, bad2, 1.0, [0, 1])
assert_raises(ZeroDivisionError, odeint, sys1d, 1.0, [0, 1], Dfun=bad_jac1)
assert_raises(ValueError, odeint, sys1d, 1.0, [0, 1], Dfun=bad_jac2)
assert_raises(ZeroDivisionError, odeint, sys2d, [1.0, 1.0], [0, 1],
Dfun=sys2d_bad_jac)
def test_odeint_bad_shapes():
# Tests of some errors that can occur with odeint.
def badrhs(x, t):
return [1, -1]
def sys1(x, t):
return -100*x
def badjac(x, t):
return [[0, 0, 0]]
# y0 must be at most 1-d.
bad_y0 = [[0, 0], [0, 0]]
assert_raises(ValueError, odeint, sys1, bad_y0, [0, 1])
# t must be at most 1-d.
bad_t = [[0, 1], [2, 3]]
assert_raises(ValueError, odeint, sys1, [10.0], bad_t)
# y0 is 10, but badrhs(x, t) returns [1, -1].
assert_raises(RuntimeError, odeint, badrhs, 10, [0, 1])
# shape of array returned by badjac(x, t) is not correct.
assert_raises(RuntimeError, odeint, sys1, [10, 10], [0, 1], Dfun=badjac)
def test_repeated_t_values():
"""Regression test for gh-8217."""
def func(x, t):
return -0.25*x
t = np.zeros(10)
sol = odeint(func, [1.], t)
assert_array_equal(sol, np.ones((len(t), 1)))
tau = 4*np.log(2)
t = [0]*9 + [tau, 2*tau, 2*tau, 3*tau]
sol = odeint(func, [1, 2], t, rtol=1e-12, atol=1e-12)
expected_sol = np.array([[1.0, 2.0]]*9 +
[[0.5, 1.0],
[0.25, 0.5],
[0.25, 0.5],
[0.125, 0.25]])
assert_allclose(sol, expected_sol)
# Edge case: empty t sequence.
sol = odeint(func, [1.], [])
assert_array_equal(sol, np.array([], dtype=np.float64).reshape((0, 1)))
# t values are not monotonic.
assert_raises(ValueError, odeint, func, [1.], [0, 1, 0.5, 0])
assert_raises(ValueError, odeint, func, [1, 2, 3], [0, -1, -2, 3])