Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
9.6 KiB
301 lines
9.6 KiB
from scipy.fft._helper import next_fast_len, _init_nd_shape_and_axes
|
|
from numpy.testing import assert_equal, assert_array_equal
|
|
from pytest import raises as assert_raises
|
|
import pytest
|
|
import numpy as np
|
|
import sys
|
|
|
|
_5_smooth_numbers = [
|
|
2, 3, 4, 5, 6, 8, 9, 10,
|
|
2 * 3 * 5,
|
|
2**3 * 3**5,
|
|
2**3 * 3**3 * 5**2,
|
|
]
|
|
|
|
def test_next_fast_len():
|
|
for n in _5_smooth_numbers:
|
|
assert_equal(next_fast_len(n), n)
|
|
|
|
|
|
def _assert_n_smooth(x, n):
|
|
x_orig = x
|
|
if n < 2:
|
|
assert False
|
|
|
|
while True:
|
|
q, r = divmod(x, 2)
|
|
if r != 0:
|
|
break
|
|
x = q
|
|
|
|
for d in range(3, n+1, 2):
|
|
while True:
|
|
q, r = divmod(x, d)
|
|
if r != 0:
|
|
break
|
|
x = q
|
|
|
|
assert x == 1, \
|
|
'x={} is not {}-smooth, remainder={}'.format(x_orig, n, x)
|
|
|
|
|
|
class TestNextFastLen(object):
|
|
|
|
def test_next_fast_len(self):
|
|
np.random.seed(1234)
|
|
|
|
def nums():
|
|
for j in range(1, 1000):
|
|
yield j
|
|
yield 2**5 * 3**5 * 4**5 + 1
|
|
|
|
for n in nums():
|
|
m = next_fast_len(n)
|
|
_assert_n_smooth(m, 11)
|
|
assert m == next_fast_len(n, False)
|
|
|
|
m = next_fast_len(n, True)
|
|
_assert_n_smooth(m, 5)
|
|
|
|
def test_np_integers(self):
|
|
ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, np.uint64]
|
|
for ityp in ITYPES:
|
|
x = ityp(12345)
|
|
testN = next_fast_len(x)
|
|
assert_equal(testN, next_fast_len(int(x)))
|
|
|
|
def testnext_fast_len_small(self):
|
|
hams = {
|
|
1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 8, 8: 8, 14: 15, 15: 15,
|
|
16: 16, 17: 18, 1021: 1024, 1536: 1536, 51200000: 51200000
|
|
}
|
|
for x, y in hams.items():
|
|
assert_equal(next_fast_len(x, True), y)
|
|
|
|
@pytest.mark.xfail(sys.maxsize < 2**32,
|
|
reason="Hamming Numbers too large for 32-bit",
|
|
raises=ValueError, strict=True)
|
|
def testnext_fast_len_big(self):
|
|
hams = {
|
|
510183360: 510183360, 510183360 + 1: 512000000,
|
|
511000000: 512000000,
|
|
854296875: 854296875, 854296875 + 1: 859963392,
|
|
196608000000: 196608000000, 196608000000 + 1: 196830000000,
|
|
8789062500000: 8789062500000, 8789062500000 + 1: 8796093022208,
|
|
206391214080000: 206391214080000,
|
|
206391214080000 + 1: 206624260800000,
|
|
470184984576000: 470184984576000,
|
|
470184984576000 + 1: 470715894135000,
|
|
7222041363087360: 7222041363087360,
|
|
7222041363087360 + 1: 7230196133913600,
|
|
# power of 5 5**23
|
|
11920928955078125: 11920928955078125,
|
|
11920928955078125 - 1: 11920928955078125,
|
|
# power of 3 3**34
|
|
16677181699666569: 16677181699666569,
|
|
16677181699666569 - 1: 16677181699666569,
|
|
# power of 2 2**54
|
|
18014398509481984: 18014398509481984,
|
|
18014398509481984 - 1: 18014398509481984,
|
|
# above this, int(ceil(n)) == int(ceil(n+1))
|
|
19200000000000000: 19200000000000000,
|
|
19200000000000000 + 1: 19221679687500000,
|
|
288230376151711744: 288230376151711744,
|
|
288230376151711744 + 1: 288325195312500000,
|
|
288325195312500000 - 1: 288325195312500000,
|
|
288325195312500000: 288325195312500000,
|
|
288325195312500000 + 1: 288555831593533440,
|
|
}
|
|
for x, y in hams.items():
|
|
assert_equal(next_fast_len(x, True), y)
|
|
|
|
def test_keyword_args(self):
|
|
assert next_fast_len(11, real=True) == 12
|
|
assert next_fast_len(target=7, real=False) == 7
|
|
|
|
|
|
class Test_init_nd_shape_and_axes(object):
|
|
|
|
def test_py_0d_defaults(self):
|
|
x = np.array(4)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([])
|
|
axes_expected = np.array([])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_0d_defaults(self):
|
|
x = np.array(7.)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([])
|
|
axes_expected = np.array([])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_py_1d_defaults(self):
|
|
x = np.array([1, 2, 3])
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([3])
|
|
axes_expected = np.array([0])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_1d_defaults(self):
|
|
x = np.arange(0, 1, .1)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([10])
|
|
axes_expected = np.array([0])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_py_2d_defaults(self):
|
|
x = np.array([[1, 2, 3, 4],
|
|
[5, 6, 7, 8]])
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([2, 4])
|
|
axes_expected = np.array([0, 1])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_2d_defaults(self):
|
|
x = np.arange(0, 1, .1).reshape(5, 2)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([5, 2])
|
|
axes_expected = np.array([0, 1])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_defaults(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([6, 2, 5, 3, 4])
|
|
axes_expected = np.array([0, 1, 2, 3, 4])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_shape(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = [10, -1, -1, 1, 4]
|
|
axes = None
|
|
|
|
shape_expected = np.array([10, 2, 5, 1, 4])
|
|
axes_expected = np.array([0, 1, 2, 3, 4])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_axes(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = None
|
|
axes = [4, 1, 2]
|
|
|
|
shape_expected = np.array([4, 2, 5])
|
|
axes_expected = np.array([4, 1, 2])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_shape_axes(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = [10, -1, 2]
|
|
axes = [1, 0, 3]
|
|
|
|
shape_expected = np.array([10, 6, 2])
|
|
axes_expected = np.array([1, 0, 3])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_shape_axes_subset(self):
|
|
x = np.zeros((2, 3, 4, 5))
|
|
shape, axes = _init_nd_shape_and_axes(x, shape=(5, 5, 5), axes=None)
|
|
|
|
assert_array_equal(shape, [5, 5, 5])
|
|
assert_array_equal(axes, [1, 2, 3])
|
|
|
|
def test_errors(self):
|
|
x = np.zeros(1)
|
|
with assert_raises(ValueError, match="axes must be a scalar or "
|
|
"iterable of integers"):
|
|
_init_nd_shape_and_axes(x, shape=None, axes=[[1, 2], [3, 4]])
|
|
|
|
with assert_raises(ValueError, match="axes must be a scalar or "
|
|
"iterable of integers"):
|
|
_init_nd_shape_and_axes(x, shape=None, axes=[1., 2., 3., 4.])
|
|
|
|
with assert_raises(ValueError,
|
|
match="axes exceeds dimensionality of input"):
|
|
_init_nd_shape_and_axes(x, shape=None, axes=[1])
|
|
|
|
with assert_raises(ValueError,
|
|
match="axes exceeds dimensionality of input"):
|
|
_init_nd_shape_and_axes(x, shape=None, axes=[-2])
|
|
|
|
with assert_raises(ValueError,
|
|
match="all axes must be unique"):
|
|
_init_nd_shape_and_axes(x, shape=None, axes=[0, 0])
|
|
|
|
with assert_raises(ValueError, match="shape must be a scalar or "
|
|
"iterable of integers"):
|
|
_init_nd_shape_and_axes(x, shape=[[1, 2], [3, 4]], axes=None)
|
|
|
|
with assert_raises(ValueError, match="shape must be a scalar or "
|
|
"iterable of integers"):
|
|
_init_nd_shape_and_axes(x, shape=[1., 2., 3., 4.], axes=None)
|
|
|
|
with assert_raises(ValueError,
|
|
match="when given, axes and shape arguments"
|
|
" have to be of the same length"):
|
|
_init_nd_shape_and_axes(np.zeros([1, 1, 1, 1]),
|
|
shape=[1, 2, 3], axes=[1])
|
|
|
|
with assert_raises(ValueError,
|
|
match="invalid number of data points"
|
|
r" \(\[0\]\) specified"):
|
|
_init_nd_shape_and_axes(x, shape=[0], axes=None)
|
|
|
|
with assert_raises(ValueError,
|
|
match="invalid number of data points"
|
|
r" \(\[-2\]\) specified"):
|
|
_init_nd_shape_and_axes(x, shape=-2, axes=None)
|
|
|