Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
9.6 KiB
297 lines
9.6 KiB
"""
|
|
Discrete Fourier Transforms - basic.py
|
|
"""
|
|
import numpy as np
|
|
import functools
|
|
from . import pypocketfft as pfft
|
|
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
|
|
_fix_shape, _fix_shape_1d, _normalization,
|
|
_workers)
|
|
|
|
def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
""" Return discrete Fourier transform of real or complex sequence. """
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
overwrite_x = overwrite_x or _datacopied(tmp, x)
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(workers)
|
|
|
|
if n is not None:
|
|
tmp, copied = _fix_shape_1d(tmp, n, axis)
|
|
overwrite_x = overwrite_x or copied
|
|
elif tmp.shape[axis] < 1:
|
|
raise ValueError("invalid number of data points ({0}) specified"
|
|
.format(tmp.shape[axis]))
|
|
|
|
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
|
|
|
|
return pfft.c2c(tmp, (axis,), forward, norm, out, workers)
|
|
|
|
|
|
fft = functools.partial(c2c, True)
|
|
fft.__name__ = 'fft'
|
|
ifft = functools.partial(c2c, False)
|
|
ifft.__name__ = 'ifft'
|
|
|
|
|
|
def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
"""
|
|
Discrete Fourier transform of a real sequence.
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(workers)
|
|
|
|
if not np.isrealobj(tmp):
|
|
raise TypeError("x must be a real sequence")
|
|
|
|
if n is not None:
|
|
tmp, _ = _fix_shape_1d(tmp, n, axis)
|
|
elif tmp.shape[axis] < 1:
|
|
raise ValueError("invalid number of data points ({0}) specified"
|
|
.format(tmp.shape[axis]))
|
|
|
|
# Note: overwrite_x is not utilised
|
|
return pfft.r2c(tmp, (axis,), forward, norm, None, workers)
|
|
|
|
|
|
rfft = functools.partial(r2c, True)
|
|
rfft.__name__ = 'rfft'
|
|
ihfft = functools.partial(r2c, False)
|
|
ihfft.__name__ = 'ihfft'
|
|
|
|
|
|
def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
"""
|
|
Return inverse discrete Fourier transform of real sequence x.
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(workers)
|
|
|
|
# TODO: Optimize for hermitian and real?
|
|
if np.isrealobj(tmp):
|
|
tmp = tmp + 0.j
|
|
|
|
# Last axis utilizes hermitian symmetry
|
|
if n is None:
|
|
n = (tmp.shape[axis] - 1) * 2
|
|
if n < 1:
|
|
raise ValueError("Invalid number of data points ({0}) specified"
|
|
.format(n))
|
|
else:
|
|
tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis)
|
|
|
|
# Note: overwrite_x is not utilized
|
|
return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers)
|
|
|
|
|
|
hfft = functools.partial(c2r, True)
|
|
hfft.__name__ = 'hfft'
|
|
irfft = functools.partial(c2r, False)
|
|
irfft.__name__ = 'irfft'
|
|
|
|
|
|
def fft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete Fourier transform.
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return fftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def ifft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete inverse Fourier transform of real or complex sequence.
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return ifftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def rfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete Fourier transform of a real sequence
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return rfftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def irfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete inverse Fourier transform of a real sequence
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return irfftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete Fourier transform of a Hermitian sequence
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return hfftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
|
|
*, plan=None):
|
|
"""
|
|
2-D discrete inverse Fourier transform of a Hermitian sequence
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
return ihfftn(x, s, axes, norm, overwrite_x, workers)
|
|
|
|
|
|
def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
"""
|
|
Return multidimensional discrete Fourier transform.
|
|
"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
|
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
|
|
overwrite_x = overwrite_x or _datacopied(tmp, x)
|
|
workers = _workers(workers)
|
|
|
|
if len(axes) == 0:
|
|
return x
|
|
|
|
tmp, copied = _fix_shape(tmp, shape, axes)
|
|
overwrite_x = overwrite_x or copied
|
|
|
|
norm = _normalization(norm, forward)
|
|
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
|
|
|
|
return pfft.c2c(tmp, axes, forward, norm, out, workers)
|
|
|
|
|
|
fftn = functools.partial(c2cn, True)
|
|
fftn.__name__ = 'fftn'
|
|
ifftn = functools.partial(c2cn, False)
|
|
ifftn.__name__ = 'ifftn'
|
|
|
|
def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
"""Return multidimensional discrete Fourier transform of real input"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
|
|
if not np.isrealobj(tmp):
|
|
raise TypeError("x must be a real sequence")
|
|
|
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
|
|
tmp, _ = _fix_shape(tmp, shape, axes)
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(workers)
|
|
|
|
if len(axes) == 0:
|
|
raise ValueError("at least 1 axis must be transformed")
|
|
|
|
# Note: overwrite_x is not utilized
|
|
return pfft.r2c(tmp, axes, forward, norm, None, workers)
|
|
|
|
|
|
rfftn = functools.partial(r2cn, True)
|
|
rfftn.__name__ = 'rfftn'
|
|
ihfftn = functools.partial(r2cn, False)
|
|
ihfftn.__name__ = 'ihfftn'
|
|
|
|
|
|
def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
|
|
workers=None, *, plan=None):
|
|
"""Multidimensional inverse discrete fourier transform with real output"""
|
|
if plan is not None:
|
|
raise NotImplementedError('Passing a precomputed plan is not yet '
|
|
'supported by scipy.fft functions')
|
|
tmp = _asfarray(x)
|
|
|
|
# TODO: Optimize for hermitian and real?
|
|
if np.isrealobj(tmp):
|
|
tmp = tmp + 0.j
|
|
|
|
noshape = s is None
|
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
|
|
|
|
if len(axes) == 0:
|
|
raise ValueError("at least 1 axis must be transformed")
|
|
|
|
if noshape:
|
|
shape[-1] = (x.shape[axes[-1]] - 1) * 2
|
|
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(workers)
|
|
|
|
# Last axis utilizes hermitian symmetry
|
|
lastsize = shape[-1]
|
|
shape[-1] = (shape[-1] // 2) + 1
|
|
|
|
tmp, _ = _fix_shape(tmp, shape, axes)
|
|
|
|
# Note: overwrite_x is not utilized
|
|
return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers)
|
|
|
|
|
|
hfftn = functools.partial(c2rn, True)
|
|
hfftn.__name__ = 'hfftn'
|
|
irfftn = functools.partial(c2rn, False)
|
|
irfftn.__name__ = 'irfftn'
|
|
|
|
|
|
def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False):
|
|
"""FFT of a real sequence, returning fftpack half complex format"""
|
|
tmp = _asfarray(x)
|
|
overwrite_x = overwrite_x or _datacopied(tmp, x)
|
|
norm = _normalization(norm, forward)
|
|
workers = _workers(None)
|
|
|
|
if tmp.dtype.kind == 'c':
|
|
raise TypeError('x must be a real sequence')
|
|
|
|
if n is not None:
|
|
tmp, copied = _fix_shape_1d(tmp, n, axis)
|
|
overwrite_x = overwrite_x or copied
|
|
elif tmp.shape[axis] < 1:
|
|
raise ValueError("invalid number of data points ({0}) specified"
|
|
.format(tmp.shape[axis]))
|
|
|
|
out = (tmp if overwrite_x else None)
|
|
|
|
return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers)
|
|
|
|
|
|
rfft_fftpack = functools.partial(r2r_fftpack, True)
|
|
rfft_fftpack.__name__ = 'rfft_fftpack'
|
|
irfft_fftpack = functools.partial(r2r_fftpack, False)
|
|
irfft_fftpack.__name__ = 'irfft_fftpack'
|
|
|