1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/test_multilevel.py

1856 lines
64 KiB

import datetime
from io import StringIO
import itertools
from itertools import product
import numpy as np
from numpy.random import randn
import pytest
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp
import pandas._testing as tm
AGG_FUNCTIONS = [
"sum",
"prod",
"min",
"max",
"median",
"mean",
"skew",
"mad",
"std",
"var",
"sem",
]
class Base:
def setup_method(self, method):
index = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
self.frame = DataFrame(
np.random.randn(10, 3),
index=index,
columns=Index(["A", "B", "C"], name="exp"),
)
self.single_level = MultiIndex(
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
)
# create test series object
arrays = [
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = zip(*arrays)
index = MultiIndex.from_tuples(tuples)
s = Series(randn(8), index=index)
s[3] = np.NaN
self.series = s
self.tdf = tm.makeTimeDataFrame(100)
self.ymd = self.tdf.groupby(
[lambda x: x.year, lambda x: x.month, lambda x: x.day]
).sum()
# use Int64Index, to make sure things work
self.ymd.index.set_levels(
[lev.astype("i8") for lev in self.ymd.index.levels], inplace=True
)
self.ymd.index.set_names(["year", "month", "day"], inplace=True)
class TestMultiLevel(Base):
def test_append(self):
a, b = self.frame[:5], self.frame[5:]
result = a.append(b)
tm.assert_frame_equal(result, self.frame)
result = a["A"].append(b["A"])
tm.assert_series_equal(result, self.frame["A"])
def test_dataframe_constructor(self):
multi = DataFrame(
np.random.randn(4, 4),
index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
)
assert isinstance(multi.index, MultiIndex)
assert not isinstance(multi.columns, MultiIndex)
multi = DataFrame(
np.random.randn(4, 4), columns=[["a", "a", "b", "b"], ["x", "y", "x", "y"]]
)
assert isinstance(multi.columns, MultiIndex)
def test_series_constructor(self):
multi = Series(
1.0, index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])]
)
assert isinstance(multi.index, MultiIndex)
multi = Series(1.0, index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
assert isinstance(multi.index, MultiIndex)
multi = Series(range(4), index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
assert isinstance(multi.index, MultiIndex)
def test_reindex_level(self):
# axis=0
month_sums = self.ymd.sum(level="month")
result = month_sums.reindex(self.ymd.index, level=1)
expected = self.ymd.groupby(level="month").transform(np.sum)
tm.assert_frame_equal(result, expected)
# Series
result = month_sums["A"].reindex(self.ymd.index, level=1)
expected = self.ymd["A"].groupby(level="month").transform(np.sum)
tm.assert_series_equal(result, expected, check_names=False)
# axis=1
month_sums = self.ymd.T.sum(axis=1, level="month")
result = month_sums.reindex(columns=self.ymd.index, level=1)
expected = self.ymd.groupby(level="month").transform(np.sum).T
tm.assert_frame_equal(result, expected)
def test_binops_level(self):
def _check_op(opname):
op = getattr(DataFrame, opname)
month_sums = self.ymd.sum(level="month")
result = op(self.ymd, month_sums, level="month")
broadcasted = self.ymd.groupby(level="month").transform(np.sum)
expected = op(self.ymd, broadcasted)
tm.assert_frame_equal(result, expected)
# Series
op = getattr(Series, opname)
result = op(self.ymd["A"], month_sums["A"], level="month")
broadcasted = self.ymd["A"].groupby(level="month").transform(np.sum)
expected = op(self.ymd["A"], broadcasted)
expected.name = "A"
tm.assert_series_equal(result, expected)
_check_op("sub")
_check_op("add")
_check_op("mul")
_check_op("div")
def test_pickle(self):
def _test_roundtrip(frame):
unpickled = tm.round_trip_pickle(frame)
tm.assert_frame_equal(frame, unpickled)
_test_roundtrip(self.frame)
_test_roundtrip(self.frame.T)
_test_roundtrip(self.ymd)
_test_roundtrip(self.ymd.T)
def test_reindex(self):
expected = self.frame.iloc[[0, 3]]
reindexed = self.frame.loc[[("foo", "one"), ("bar", "one")]]
tm.assert_frame_equal(reindexed, expected)
def test_reindex_preserve_levels(self):
new_index = self.ymd.index[::10]
chunk = self.ymd.reindex(new_index)
assert chunk.index is new_index
chunk = self.ymd.loc[new_index]
assert chunk.index is new_index
ymdT = self.ymd.T
chunk = ymdT.reindex(columns=new_index)
assert chunk.columns is new_index
chunk = ymdT.loc[:, new_index]
assert chunk.columns is new_index
def test_repr_to_string(self):
repr(self.frame)
repr(self.ymd)
repr(self.frame.T)
repr(self.ymd.T)
buf = StringIO()
self.frame.to_string(buf=buf)
self.ymd.to_string(buf=buf)
self.frame.T.to_string(buf=buf)
self.ymd.T.to_string(buf=buf)
def test_repr_name_coincide(self):
index = MultiIndex.from_tuples(
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
)
df = DataFrame({"value": [0, 1]}, index=index)
lines = repr(df).split("\n")
assert lines[2].startswith("a 0 foo")
def test_delevel_infer_dtype(self):
tuples = list(product(["foo", "bar"], [10, 20], [1.0, 1.1]))
index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled["prm1"])
assert is_float_dtype(deleveled["prm2"])
def test_reset_index_with_drop(self):
deleveled = self.ymd.reset_index(drop=True)
assert len(deleveled.columns) == len(self.ymd.columns)
assert deleveled.index.name == self.ymd.index.name
deleveled = self.series.reset_index()
assert isinstance(deleveled, DataFrame)
assert len(deleveled.columns) == len(self.series.index.levels) + 1
assert deleveled.index.name == self.series.index.name
deleveled = self.series.reset_index(drop=True)
assert isinstance(deleveled, Series)
assert deleveled.index.name == self.series.index.name
def test_count_level(self):
def _check_counts(frame, axis=0):
index = frame._get_axis(axis)
for i in range(index.nlevels):
result = frame.count(axis=axis, level=i)
expected = frame.groupby(axis=axis, level=i).count()
expected = expected.reindex_like(result).astype("i8")
tm.assert_frame_equal(result, expected)
self.frame.iloc[1, [1, 2]] = np.nan
self.frame.iloc[7, [0, 1]] = np.nan
self.ymd.iloc[1, [1, 2]] = np.nan
self.ymd.iloc[7, [0, 1]] = np.nan
_check_counts(self.frame)
_check_counts(self.ymd)
_check_counts(self.frame.T, axis=1)
_check_counts(self.ymd.T, axis=1)
# can't call with level on regular DataFrame
df = tm.makeTimeDataFrame()
with pytest.raises(TypeError, match="hierarchical"):
df.count(level=0)
self.frame["D"] = "foo"
result = self.frame.count(level=0, numeric_only=True)
tm.assert_index_equal(result.columns, Index(list("ABC"), name="exp"))
def test_count_index_with_nan(self):
# https://github.com/pandas-dev/pandas/issues/21824
df = DataFrame(
{
"Person": ["John", "Myla", None, "John", "Myla"],
"Age": [24.0, 5, 21.0, 33, 26],
"Single": [False, True, True, True, False],
}
)
# count on row labels
res = df.set_index(["Person", "Single"]).count(level="Person")
expected = DataFrame(
index=Index(["John", "Myla"], name="Person"),
columns=Index(["Age"]),
data=[2, 2],
)
tm.assert_frame_equal(res, expected)
# count on column labels
res = df.set_index(["Person", "Single"]).T.count(level="Person", axis=1)
expected = DataFrame(
columns=Index(["John", "Myla"], name="Person"),
index=Index(["Age"]),
data=[[2, 2]],
)
tm.assert_frame_equal(res, expected)
def test_count_level_series(self):
index = MultiIndex(
levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]],
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]],
)
s = Series(np.random.randn(len(index)), index=index)
result = s.count(level=0)
expected = s.groupby(level=0).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
result = s.count(level=1)
expected = s.groupby(level=1).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
def test_count_level_corner(self):
s = self.frame["A"][:0]
result = s.count(level=0)
expected = Series(0, index=s.index.levels[0], name="A")
tm.assert_series_equal(result, expected)
df = self.frame[:0]
result = df.count(level=0)
expected = (
DataFrame(index=s.index.levels[0].set_names(["first"]), columns=df.columns)
.fillna(0)
.astype(np.int64)
)
tm.assert_frame_equal(result, expected)
def test_get_level_number_out_of_bounds(self):
with pytest.raises(IndexError, match="Too many levels"):
self.frame.index._get_level_number(2)
with pytest.raises(IndexError, match="not a valid level number"):
self.frame.index._get_level_number(-3)
def test_unstack(self):
# just check that it works for now
unstacked = self.ymd.unstack()
unstacked.unstack()
# test that ints work
self.ymd.astype(int).unstack()
# test that int32 work
self.ymd.astype(np.int32).unstack()
@pytest.mark.parametrize(
"result_rows,result_columns,index_product,expected_row",
[
(
[[1, 1, None, None, 30.0, None], [2, 2, None, None, 30.0, None]],
["ix1", "ix2", "col1", "col2", "col3", "col4"],
2,
[None, None, 30.0, None],
),
(
[[1, 1, None, None, 30.0], [2, 2, None, None, 30.0]],
["ix1", "ix2", "col1", "col2", "col3"],
2,
[None, None, 30.0],
),
(
[[1, 1, None, None, 30.0], [2, None, None, None, 30.0]],
["ix1", "ix2", "col1", "col2", "col3"],
None,
[None, None, 30.0],
),
],
)
def test_unstack_partial(
self, result_rows, result_columns, index_product, expected_row
):
# check for regressions on this issue:
# https://github.com/pandas-dev/pandas/issues/19351
# make sure DataFrame.unstack() works when its run on a subset of the DataFrame
# and the Index levels contain values that are not present in the subset
result = pd.DataFrame(result_rows, columns=result_columns).set_index(
["ix1", "ix2"]
)
result = result.iloc[1:2].unstack("ix2")
expected = pd.DataFrame(
[expected_row],
columns=pd.MultiIndex.from_product(
[result_columns[2:], [index_product]], names=[None, "ix2"]
),
index=pd.Index([2], name="ix1"),
)
tm.assert_frame_equal(result, expected)
def test_unstack_multiple_no_empty_columns(self):
index = MultiIndex.from_tuples(
[(0, "foo", 0), (0, "bar", 0), (1, "baz", 1), (1, "qux", 1)]
)
s = Series(np.random.randn(4), index=index)
unstacked = s.unstack([1, 2])
expected = unstacked.dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected)
def test_stack(self):
# regular roundtrip
unstacked = self.ymd.unstack()
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
unlexsorted = self.ymd.sort_index(level=2)
unstacked = unlexsorted.unstack(2)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted[::-1]
unstacked = unlexsorted.unstack(1)
restacked = unstacked.stack().swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted.swaplevel(0, 1)
unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
restacked = unstacked.stack(0).swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
# columns unsorted
unstacked = self.ymd.unstack()
unstacked = unstacked.sort_index(axis=1, ascending=False)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
# more than 2 levels in the columns
unstacked = self.ymd.unstack(1).unstack(1)
result = unstacked.stack(1)
expected = self.ymd.unstack()
tm.assert_frame_equal(result, expected)
result = unstacked.stack(2)
expected = self.ymd.unstack(1)
tm.assert_frame_equal(result, expected)
result = unstacked.stack(0)
expected = self.ymd.stack().unstack(1).unstack(1)
tm.assert_frame_equal(result, expected)
# not all levels present in each echelon
unstacked = self.ymd.unstack(2).loc[:, ::3]
stacked = unstacked.stack().stack()
ymd_stacked = self.ymd.stack()
tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))
# stack with negative number
result = self.ymd.unstack(0).stack(-2)
expected = self.ymd.unstack(0).stack(0)
# GH10417
def check(left, right):
tm.assert_series_equal(left, right)
assert left.index.is_unique is False
li, ri = left.index, right.index
tm.assert_index_equal(li, ri)
df = DataFrame(
np.arange(12).reshape(4, 3),
index=list("abab"),
columns=["1st", "2nd", "3rd"],
)
mi = MultiIndex(
levels=[["a", "b"], ["1st", "2nd", "3rd"]],
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile(np.arange(3), 4)],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
df.columns = ["1st", "2nd", "1st"]
mi = MultiIndex(
levels=[["a", "b"], ["1st", "2nd"]],
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile([0, 1, 0], 4)],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
tpls = ("a", 2), ("b", 1), ("a", 1), ("b", 2)
df.index = MultiIndex.from_tuples(tpls)
mi = MultiIndex(
levels=[["a", "b"], [1, 2], ["1st", "2nd"]],
codes=[
np.tile(np.arange(2).repeat(3), 2),
np.repeat([1, 0, 1], [3, 6, 3]),
np.tile([0, 1, 0], 4),
],
)
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
def test_unstack_odd_failure(self):
data = """day,time,smoker,sum,len
Fri,Dinner,No,8.25,3.
Fri,Dinner,Yes,27.03,9
Fri,Lunch,No,3.0,1
Fri,Lunch,Yes,13.68,6
Sat,Dinner,No,139.63,45
Sat,Dinner,Yes,120.77,42
Sun,Dinner,No,180.57,57
Sun,Dinner,Yes,66.82,19
Thur,Dinner,No,3.0,1
Thur,Lunch,No,117.32,44
Thur,Lunch,Yes,51.51,17"""
df = pd.read_csv(StringIO(data)).set_index(["day", "time", "smoker"])
# it works, #2100
result = df.unstack(2)
recons = result.stack()
tm.assert_frame_equal(recons, df)
def test_stack_mixed_dtype(self):
df = self.frame.T
df["foo", "four"] = "foo"
df = df.sort_index(level=1, axis=1)
stacked = df.stack()
result = df["foo"].stack().sort_index()
tm.assert_series_equal(stacked["foo"], result, check_names=False)
assert result.name is None
assert stacked["bar"].dtype == np.float_
def test_unstack_bug(self):
df = DataFrame(
{
"state": ["naive", "naive", "naive", "activ", "activ", "activ"],
"exp": ["a", "b", "b", "b", "a", "a"],
"barcode": [1, 2, 3, 4, 1, 3],
"v": ["hi", "hi", "bye", "bye", "bye", "peace"],
"extra": np.arange(6.0),
}
)
result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)
unstacked = result.unstack()
restacked = unstacked.stack()
tm.assert_series_equal(restacked, result.reindex(restacked.index).astype(float))
def test_stack_unstack_preserve_names(self):
unstacked = self.frame.unstack()
assert unstacked.index.name == "first"
assert unstacked.columns.names == ["exp", "second"]
restacked = unstacked.stack()
assert restacked.index.names == self.frame.index.names
@pytest.mark.parametrize("method", ["stack", "unstack"])
def test_stack_unstack_wrong_level_name(self, method):
# GH 18303 - wrong level name should raise
# A DataFrame with flat axes:
df = self.frame.loc["foo"]
with pytest.raises(KeyError, match="does not match index name"):
getattr(df, method)("mistake")
if method == "unstack":
# Same on a Series:
s = df.iloc[:, 0]
with pytest.raises(KeyError, match="does not match index name"):
getattr(s, method)("mistake")
def test_unused_level_raises(self):
# GH 20410
mi = MultiIndex(
levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]],
codes=[[1, 0], [1, 0]],
)
df = DataFrame(-1, index=range(3), columns=mi)
with pytest.raises(KeyError, match="notevenone"):
df["notevenone"]
def test_unstack_level_name(self):
result = self.frame.unstack("second")
expected = self.frame.unstack(level=1)
tm.assert_frame_equal(result, expected)
def test_stack_level_name(self):
unstacked = self.frame.unstack("second")
result = unstacked.stack("exp")
expected = self.frame.unstack().stack(0)
tm.assert_frame_equal(result, expected)
result = self.frame.stack("exp")
expected = self.frame.stack()
tm.assert_series_equal(result, expected)
def test_stack_unstack_multiple(self):
unstacked = self.ymd.unstack(["year", "month"])
expected = self.ymd.unstack("year").unstack("month")
tm.assert_frame_equal(unstacked, expected)
assert unstacked.columns.names == expected.columns.names
# series
s = self.ymd["A"]
s_unstacked = s.unstack(["year", "month"])
tm.assert_frame_equal(s_unstacked, expected["A"])
restacked = unstacked.stack(["year", "month"])
restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
restacked = restacked.sort_index(level=0)
tm.assert_frame_equal(restacked, self.ymd)
assert restacked.index.names == self.ymd.index.names
# GH #451
unstacked = self.ymd.unstack([1, 2])
expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected)
unstacked = self.ymd.unstack([2, 1])
expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how="all")
tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns])
def test_stack_names_and_numbers(self):
unstacked = self.ymd.unstack(["year", "month"])
# Can't use mixture of names and numbers to stack
with pytest.raises(ValueError, match="level should contain"):
unstacked.stack([0, "month"])
def test_stack_multiple_out_of_bounds(self):
# nlevels == 3
unstacked = self.ymd.unstack(["year", "month"])
with pytest.raises(IndexError, match="Too many levels"):
unstacked.stack([2, 3])
with pytest.raises(IndexError, match="not a valid level number"):
unstacked.stack([-4, -3])
def test_unstack_period_series(self):
# GH 4342
idx1 = pd.PeriodIndex(
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
freq="M",
name="period",
)
idx2 = Index(["A", "B"] * 3, name="str")
value = [1, 2, 3, 4, 5, 6]
idx = MultiIndex.from_arrays([idx1, idx2])
s = Series(value, index=idx)
result1 = s.unstack()
result2 = s.unstack(level=1)
result3 = s.unstack(level=0)
e_idx = pd.PeriodIndex(
["2013-01", "2013-02", "2013-03"], freq="M", name="period"
)
expected = DataFrame(
{"A": [1, 3, 5], "B": [2, 4, 6]}, index=e_idx, columns=["A", "B"]
)
expected.columns.name = "str"
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected.T)
idx1 = pd.PeriodIndex(
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
freq="M",
name="period1",
)
idx2 = pd.PeriodIndex(
["2013-12", "2013-11", "2013-10", "2013-09", "2013-08", "2013-07"],
freq="M",
name="period2",
)
idx = MultiIndex.from_arrays([idx1, idx2])
s = Series(value, index=idx)
result1 = s.unstack()
result2 = s.unstack(level=1)
result3 = s.unstack(level=0)
e_idx = pd.PeriodIndex(
["2013-01", "2013-02", "2013-03"], freq="M", name="period1"
)
e_cols = pd.PeriodIndex(
["2013-07", "2013-08", "2013-09", "2013-10", "2013-11", "2013-12"],
freq="M",
name="period2",
)
expected = DataFrame(
[
[np.nan, np.nan, np.nan, np.nan, 2, 1],
[np.nan, np.nan, 4, 3, np.nan, np.nan],
[6, 5, np.nan, np.nan, np.nan, np.nan],
],
index=e_idx,
columns=e_cols,
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected.T)
def test_unstack_period_frame(self):
# GH 4342
idx1 = pd.PeriodIndex(
["2014-01", "2014-02", "2014-02", "2014-02", "2014-01", "2014-01"],
freq="M",
name="period1",
)
idx2 = pd.PeriodIndex(
["2013-12", "2013-12", "2014-02", "2013-10", "2013-10", "2014-02"],
freq="M",
name="period2",
)
value = {"A": [1, 2, 3, 4, 5, 6], "B": [6, 5, 4, 3, 2, 1]}
idx = MultiIndex.from_arrays([idx1, idx2])
df = DataFrame(value, index=idx)
result1 = df.unstack()
result2 = df.unstack(level=1)
result3 = df.unstack(level=0)
e_1 = pd.PeriodIndex(["2014-01", "2014-02"], freq="M", name="period1")
e_2 = pd.PeriodIndex(
["2013-10", "2013-12", "2014-02", "2013-10", "2013-12", "2014-02"],
freq="M",
name="period2",
)
e_cols = MultiIndex.from_arrays(["A A A B B B".split(), e_2])
expected = DataFrame(
[[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
e_1 = pd.PeriodIndex(
["2014-01", "2014-02", "2014-01", "2014-02"], freq="M", name="period1"
)
e_2 = pd.PeriodIndex(
["2013-10", "2013-12", "2014-02"], freq="M", name="period2"
)
e_cols = MultiIndex.from_arrays(["A A B B".split(), e_1])
expected = DataFrame(
[[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols
)
tm.assert_frame_equal(result3, expected)
def test_stack_multiple_bug(self):
""" bug when some uniques are not present in the data #3170"""
id_col = ([1] * 3) + ([2] * 3)
name = (["a"] * 3) + (["b"] * 3)
date = pd.to_datetime(["2013-01-03", "2013-01-04", "2013-01-05"] * 2)
var1 = np.random.randint(0, 100, 6)
df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1))
multi = df.set_index(["DATE", "ID"])
multi.columns.name = "Params"
unst = multi.unstack("ID")
down = unst.resample("W-THU").mean()
rs = down.stack("ID")
xp = unst.loc[:, ["VAR1"]].resample("W-THU").mean().stack("ID")
xp.columns.name = "Params"
tm.assert_frame_equal(rs, xp)
def test_stack_dropna(self):
# GH #3997
df = DataFrame({"A": ["a1", "a2"], "B": ["b1", "b2"], "C": [1, 1]})
df = df.set_index(["A", "B"])
stacked = df.unstack().stack(dropna=False)
assert len(stacked) > len(stacked.dropna())
stacked = df.unstack().stack(dropna=True)
tm.assert_frame_equal(stacked, stacked.dropna())
def test_unstack_multiple_hierarchical(self):
df = DataFrame(
index=[
[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 0, 1, 0, 1, 0, 1],
],
columns=[[0, 0, 1, 1], [0, 1, 0, 1]],
)
df.index.names = ["a", "b", "c"]
df.columns.names = ["d", "e"]
# it works!
df.unstack(["b", "c"])
def test_groupby_transform(self):
s = self.frame["A"]
grouper = s.index.get_level_values(0)
grouped = s.groupby(grouper)
applied = grouped.apply(lambda x: x * 2)
expected = grouped.transform(lambda x: x * 2)
result = applied.reindex(expected.index)
tm.assert_series_equal(result, expected, check_names=False)
def test_unstack_sparse_keyspace(self):
# memory problems with naive impl #2278
# Generate Long File & Test Pivot
NUM_ROWS = 1000
df = DataFrame(
{
"A": np.random.randint(100, size=NUM_ROWS),
"B": np.random.randint(300, size=NUM_ROWS),
"C": np.random.randint(-7, 7, size=NUM_ROWS),
"D": np.random.randint(-19, 19, size=NUM_ROWS),
"E": np.random.randint(3000, size=NUM_ROWS),
"F": np.random.randn(NUM_ROWS),
}
)
idf = df.set_index(["A", "B", "C", "D", "E"])
# it works! is sufficient
idf.unstack("E")
def test_unstack_unobserved_keys(self):
# related to #2278 refactoring
levels = [[0, 1], [0, 1, 2, 3]]
codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
index = MultiIndex(levels, codes)
df = DataFrame(np.random.randn(4, 2), index=index)
result = df.unstack()
assert len(result.columns) == 4
recons = result.stack()
tm.assert_frame_equal(recons, df)
@pytest.mark.slow
def test_unstack_number_of_levels_larger_than_int32(self):
# GH 20601
df = DataFrame(
np.random.randn(2 ** 16, 2), index=[np.arange(2 ** 16), np.arange(2 ** 16)]
)
with pytest.raises(ValueError, match="int32 overflow"):
df.unstack()
def test_stack_order_with_unsorted_levels(self):
# GH 16323
def manual_compare_stacked(df, df_stacked, lev0, lev1):
assert all(
df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]]
for row in df.index
for col in df.columns
)
# deep check for 1-row case
for width in [2, 3]:
levels_poss = itertools.product(
itertools.permutations([0, 1, 2], width), repeat=2
)
for levels in levels_poss:
columns = MultiIndex(levels=levels, codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
df = DataFrame(columns=columns, data=[range(4)])
for stack_lev in range(2):
df_stacked = df.stack(stack_lev)
manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev)
# check multi-row case
mi = MultiIndex(
levels=[["A", "C", "B"], ["B", "A", "C"]],
codes=[np.repeat(range(3), 3), np.tile(range(3), 3)],
)
df = DataFrame(
columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)
)
manual_compare_stacked(df, df.stack(0), 0, 1)
def test_stack_unstack_unordered_multiindex(self):
# GH 18265
values = np.arange(5)
data = np.vstack(
[
[f"b{x}" for x in values], # b0, b1, ..
[f"a{x}" for x in values], # a0, a1, ..
]
)
df = pd.DataFrame(data.T, columns=["b", "a"])
df.columns.name = "first"
second_level_dict = {"x": df}
multi_level_df = pd.concat(second_level_dict, axis=1)
multi_level_df.columns.names = ["second", "first"]
df = multi_level_df.reindex(sorted(multi_level_df.columns), axis=1)
result = df.stack(["first", "second"]).unstack(["first", "second"])
expected = DataFrame(
[["a0", "b0"], ["a1", "b1"], ["a2", "b2"], ["a3", "b3"], ["a4", "b4"]],
index=[0, 1, 2, 3, 4],
columns=MultiIndex.from_tuples(
[("a", "x"), ("b", "x")], names=["first", "second"]
),
)
tm.assert_frame_equal(result, expected)
def test_groupby_corner(self):
midx = MultiIndex(
levels=[["foo"], ["bar"], ["baz"]],
codes=[[0], [0], [0]],
names=["one", "two", "three"],
)
df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx)
# should work
df.groupby(level="three")
def test_groupby_level_no_obs(self):
# #1697
midx = MultiIndex.from_tuples(
[
("f1", "s1"),
("f1", "s2"),
("f2", "s1"),
("f2", "s2"),
("f3", "s1"),
("f3", "s2"),
]
)
df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx)
df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])]
grouped = df1.groupby(axis=1, level=0)
result = grouped.sum()
assert (result.columns == ["f2", "f3"]).all()
def test_join(self):
a = self.frame.loc[self.frame.index[:5], ["A"]]
b = self.frame.loc[self.frame.index[2:], ["B", "C"]]
joined = a.join(b, how="outer").reindex(self.frame.index)
expected = self.frame.copy()
expected.values[np.isnan(joined.values)] = np.nan
assert not np.isnan(joined.values).all()
# TODO what should join do with names ?
tm.assert_frame_equal(joined, expected, check_names=False)
def test_swaplevel(self):
swapped = self.frame["A"].swaplevel()
swapped2 = self.frame["A"].swaplevel(0)
swapped3 = self.frame["A"].swaplevel(0, 1)
swapped4 = self.frame["A"].swaplevel("first", "second")
assert not swapped.index.equals(self.frame.index)
tm.assert_series_equal(swapped, swapped2)
tm.assert_series_equal(swapped, swapped3)
tm.assert_series_equal(swapped, swapped4)
back = swapped.swaplevel()
back2 = swapped.swaplevel(0)
back3 = swapped.swaplevel(0, 1)
back4 = swapped.swaplevel("second", "first")
assert back.index.equals(self.frame.index)
tm.assert_series_equal(back, back2)
tm.assert_series_equal(back, back3)
tm.assert_series_equal(back, back4)
ft = self.frame.T
swapped = ft.swaplevel("first", "second", axis=1)
exp = self.frame.swaplevel("first", "second").T
tm.assert_frame_equal(swapped, exp)
msg = "Can only swap levels on a hierarchical axis."
with pytest.raises(TypeError, match=msg):
DataFrame(range(3)).swaplevel()
def test_insert_index(self):
df = self.ymd[:5].T
df[2000, 1, 10] = df[2000, 1, 7]
assert isinstance(df.columns, MultiIndex)
assert (df[2000, 1, 10] == df[2000, 1, 7]).all()
def test_alignment(self):
x = Series(
data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])
)
y = Series(
data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])
)
res = x - y
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
# hit non-monotonic code path
res = x[::-1] - y[::-1]
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
def test_count(self):
frame = self.frame.copy()
frame.index.names = ["a", "b"]
result = frame.count(level="b")
expect = self.frame.count(level=1)
tm.assert_frame_equal(result, expect, check_names=False)
result = frame.count(level="a")
expect = self.frame.count(level=0)
tm.assert_frame_equal(result, expect, check_names=False)
series = self.series.copy()
series.index.names = ["a", "b"]
result = series.count(level="b")
expect = self.series.count(level=1).rename_axis("b")
tm.assert_series_equal(result, expect)
result = series.count(level="a")
expect = self.series.count(level=0).rename_axis("a")
tm.assert_series_equal(result, expect)
msg = "Level x not found"
with pytest.raises(KeyError, match=msg):
series.count("x")
with pytest.raises(KeyError, match=msg):
frame.count(level="x")
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_series_group_min_max(self, op, level, skipna, sort):
# GH 17537
grouped = self.series.groupby(level=level, sort=sort)
# skipna=True
leftside = grouped.agg(lambda x: getattr(x, op)(skipna=skipna))
rightside = getattr(self.series, op)(level=level, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level)
tm.assert_series_equal(leftside, rightside)
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_frame_group_ops(self, op, level, axis, skipna, sort):
# GH 17537
self.frame.iloc[1, [1, 2]] = np.nan
self.frame.iloc[7, [0, 1]] = np.nan
level_name = self.frame.index.names[level]
if axis == 0:
frame = self.frame
else:
frame = self.frame.T
grouped = frame.groupby(level=level, axis=axis, sort=sort)
pieces = []
def aggf(x):
pieces.append(x)
return getattr(x, op)(skipna=skipna, axis=axis)
leftside = grouped.agg(aggf)
rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level, axis=axis)
frame = frame.sort_index(level=level, axis=axis)
# for good measure, groupby detail
level_index = frame._get_axis(axis).levels[level].rename(level_name)
tm.assert_index_equal(leftside._get_axis(axis), level_index)
tm.assert_index_equal(rightside._get_axis(axis), level_index)
tm.assert_frame_equal(leftside, rightside)
def test_stat_op_corner(self):
obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)]))
result = obj.sum(level=0)
expected = Series([10.0], index=[2])
tm.assert_series_equal(result, expected)
def test_frame_any_all_group(self):
df = DataFrame(
{"data": [False, False, True, False, True, False, True]},
index=[
["one", "one", "two", "one", "two", "two", "two"],
[0, 1, 0, 2, 1, 2, 3],
],
)
result = df.any(level=0)
ex = DataFrame({"data": [False, True]}, index=["one", "two"])
tm.assert_frame_equal(result, ex)
result = df.all(level=0)
ex = DataFrame({"data": [False, False]}, index=["one", "two"])
tm.assert_frame_equal(result, ex)
def test_series_any_timedelta(self):
# GH 17667
df = DataFrame(
{
"a": Series([0, 0]),
"t": Series([pd.to_timedelta(0, "s"), pd.to_timedelta(1, "ms")]),
}
)
result = df.any(axis=0)
expected = Series(data=[False, True], index=["a", "t"])
tm.assert_series_equal(result, expected)
result = df.any(axis=1)
expected = Series(data=[False, True])
tm.assert_series_equal(result, expected)
def test_std_var_pass_ddof(self):
index = MultiIndex.from_arrays(
[np.arange(5).repeat(10), np.tile(np.arange(10), 5)]
)
df = DataFrame(np.random.randn(len(index), 5), index=index)
for meth in ["var", "std"]:
ddof = 4
alt = lambda x: getattr(x, meth)(ddof=ddof)
result = getattr(df[0], meth)(level=0, ddof=ddof)
expected = df[0].groupby(level=0).agg(alt)
tm.assert_series_equal(result, expected)
result = getattr(df, meth)(level=0, ddof=ddof)
expected = df.groupby(level=0).agg(alt)
tm.assert_frame_equal(result, expected)
def test_frame_series_agg_multiple_levels(self):
result = self.ymd.sum(level=["year", "month"])
expected = self.ymd.groupby(level=["year", "month"]).sum()
tm.assert_frame_equal(result, expected)
result = self.ymd["A"].sum(level=["year", "month"])
expected = self.ymd["A"].groupby(level=["year", "month"]).sum()
tm.assert_series_equal(result, expected)
def test_groupby_multilevel(self):
result = self.ymd.groupby(level=[0, 1]).mean()
k1 = self.ymd.index.get_level_values(0)
k2 = self.ymd.index.get_level_values(1)
expected = self.ymd.groupby([k1, k2]).mean()
# TODO groupby with level_values drops names
tm.assert_frame_equal(result, expected, check_names=False)
assert result.index.names == self.ymd.index.names[:2]
result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
tm.assert_frame_equal(result, result2)
def test_groupby_multilevel_with_transform(self):
pass
def test_multilevel_consolidate(self):
index = MultiIndex.from_tuples(
[("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")]
)
df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
df["Totals", ""] = df.sum(1)
df = df._consolidate()
def test_loc_preserve_names(self):
result = self.ymd.loc[2000]
result2 = self.ymd["A"].loc[2000]
assert result.index.names == self.ymd.index.names[1:]
assert result2.index.names == self.ymd.index.names[1:]
result = self.ymd.loc[2000, 2]
result2 = self.ymd["A"].loc[2000, 2]
assert result.index.name == self.ymd.index.names[2]
assert result2.index.name == self.ymd.index.names[2]
def test_unstack_preserve_types(self):
# GH #403
self.ymd["E"] = "foo"
self.ymd["F"] = 2
unstacked = self.ymd.unstack("month")
assert unstacked["A", 1].dtype == np.float64
assert unstacked["E", 1].dtype == np.object_
assert unstacked["F", 1].dtype == np.float64
def test_unstack_group_index_overflow(self):
codes = np.tile(np.arange(500), 2)
level = np.arange(500)
index = MultiIndex(
levels=[level] * 8 + [[0, 1]],
codes=[codes] * 8 + [np.arange(2).repeat(500)],
)
s = Series(np.arange(1000), index=index)
result = s.unstack()
assert result.shape == (500, 2)
# test roundtrip
stacked = result.stack()
tm.assert_series_equal(s, stacked.reindex(s.index))
# put it at beginning
index = MultiIndex(
levels=[[0, 1]] + [level] * 8,
codes=[np.arange(2).repeat(500)] + [codes] * 8,
)
s = Series(np.arange(1000), index=index)
result = s.unstack(0)
assert result.shape == (500, 2)
# put it in middle
index = MultiIndex(
levels=[level] * 4 + [[0, 1]] + [level] * 4,
codes=([codes] * 4 + [np.arange(2).repeat(500)] + [codes] * 4),
)
s = Series(np.arange(1000), index=index)
result = s.unstack(4)
assert result.shape == (500, 2)
def test_to_html(self):
self.ymd.columns.name = "foo"
self.ymd.to_html()
self.ymd.T.to_html()
def test_level_with_tuples(self):
index = MultiIndex(
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar", 0)]
result2 = series.loc[("foo", "bar", 0)]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"):
series[("foo", "bar", 0), 2]
result = frame.loc[("foo", "bar", 0)]
result2 = frame.xs(("foo", "bar", 0))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
index = MultiIndex(
levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar")]
result2 = series.loc[("foo", "bar")]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
result = frame.loc[("foo", "bar")]
result2 = frame.xs(("foo", "bar"))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
def test_mixed_depth_pop(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(randn(4, 6), columns=index)
df1 = df.copy()
df2 = df.copy()
result = df1.pop("a")
expected = df2.pop(("a", "", ""))
tm.assert_series_equal(expected, result, check_names=False)
tm.assert_frame_equal(df1, df2)
assert result.name == "a"
expected = df1["top"]
df1 = df1.drop(["top"], axis=1)
result = df2.pop("top")
tm.assert_frame_equal(expected, result)
tm.assert_frame_equal(df1, df2)
def test_reindex_level_partial_selection(self):
result = self.frame.reindex(["foo", "qux"], level=0)
expected = self.frame.iloc[[0, 1, 2, 7, 8, 9]]
tm.assert_frame_equal(result, expected)
result = self.frame.T.reindex(["foo", "qux"], axis=1, level=0)
tm.assert_frame_equal(result, expected.T)
result = self.frame.loc[["foo", "qux"]]
tm.assert_frame_equal(result, expected)
result = self.frame["A"].loc[["foo", "qux"]]
tm.assert_series_equal(result, expected["A"])
result = self.frame.T.loc[:, ["foo", "qux"]]
tm.assert_frame_equal(result, expected.T)
def test_unicode_repr_level_names(self):
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])
s = Series(range(2), index=index)
df = DataFrame(np.random.randn(2, 4), index=index)
repr(s)
repr(df)
def test_join_segfault(self):
# 1532
df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
df1 = df1.set_index(["a", "b"])
df2 = df2.set_index(["a", "b"])
# it works!
for how in ["left", "right", "outer"]:
df1.join(df2, how=how)
def test_frame_dict_constructor_empty_series(self):
s1 = Series(
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])
)
s2 = Series(
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])
)
s3 = Series(dtype=object)
# it works!
DataFrame({"foo": s1, "bar": s2, "baz": s3})
DataFrame.from_dict({"foo": s1, "baz": s3, "bar": s2})
@pytest.mark.parametrize("d", [4, "d"])
def test_empty_frame_groupby_dtypes_consistency(self, d):
# GH 20888
group_keys = ["a", "b", "c"]
df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]})
g = df[df.a == 2].groupby(group_keys)
result = g.first().index
expected = MultiIndex(
levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"]
)
tm.assert_index_equal(result, expected)
def test_multiindex_na_repr(self):
# only an issue with long columns
df3 = DataFrame(
{
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
"B" * 30: {("A", "A0006000", "nuit"): np.nan},
"C" * 30: {("A", "A0006000", "nuit"): np.nan},
"D" * 30: {("A", "A0006000", "nuit"): np.nan},
"E" * 30: {("A", "A0006000", "nuit"): "A"},
"F" * 30: {("A", "A0006000", "nuit"): np.nan},
}
)
idf = df3.set_index(["A" * 30, "C" * 30])
repr(idf)
def test_assign_index_sequences(self):
# #2200
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
["a", "b"]
)
index = list(df.index)
index[0] = ("faz", "boo")
df.index = index
repr(df)
# this travels an improper code path
index[0] = ["faz", "boo"]
df.index = index
repr(df)
def test_duplicate_groupby_issues(self):
idx_tp = [
("600809", "20061231"),
("600809", "20070331"),
("600809", "20070630"),
("600809", "20070331"),
]
dt = ["demo", "demo", "demo", "demo"]
idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"])
s = Series(dt, index=idx)
result = s.groupby(s.index).first()
assert len(result) == 3
def test_duplicate_mi(self):
# GH 4516
df = DataFrame(
[
["foo", "bar", 1.0, 1],
["foo", "bar", 2.0, 2],
["bah", "bam", 3.0, 3],
["bah", "bam", 4.0, 4],
["foo", "bar", 5.0, 5],
["bah", "bam", 6.0, 6],
],
columns=list("ABCD"),
)
df = df.set_index(["A", "B"])
df = df.sort_index(level=0)
expected = DataFrame(
[["foo", "bar", 1.0, 1], ["foo", "bar", 2.0, 2], ["foo", "bar", 5.0, 5]],
columns=list("ABCD"),
).set_index(["A", "B"])
result = df.loc[("foo", "bar")]
tm.assert_frame_equal(result, expected)
def test_multiindex_set_index(self):
# segfault in #3308
d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]}
df = DataFrame(d)
tuples = [(0, 1), (0, 2), (1, 2)]
df["tuples"] = tuples
index = MultiIndex.from_tuples(df["tuples"])
# it works!
df.set_index(index)
def test_set_index_datetime(self):
# GH 3950
df = DataFrame(
{
"label": ["a", "a", "a", "b", "b", "b"],
"datetime": [
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
"value": range(6),
}
)
df.index = pd.to_datetime(df.pop("datetime"), utc=True)
df.index = df.index.tz_convert("US/Pacific")
expected = pd.DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
name="datetime",
)
expected = expected.tz_localize("UTC").tz_convert("US/Pacific")
df = df.set_index("label", append=True)
tm.assert_index_equal(df.index.levels[0], expected)
tm.assert_index_equal(df.index.levels[1], Index(["a", "b"], name="label"))
assert df.index.names == ["datetime", "label"]
df = df.swaplevel(0, 1)
tm.assert_index_equal(df.index.levels[0], Index(["a", "b"], name="label"))
tm.assert_index_equal(df.index.levels[1], expected)
assert df.index.names == ["label", "datetime"]
df = DataFrame(np.random.random(6))
idx1 = pd.DatetimeIndex(
[
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
tz="US/Eastern",
)
idx2 = pd.DatetimeIndex(
[
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
],
tz="US/Eastern",
)
idx3 = pd.date_range("2011-01-01 09:00", periods=6, tz="Asia/Tokyo")
idx3 = idx3._with_freq(None)
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = pd.DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
tz="US/Eastern",
)
expected2 = pd.DatetimeIndex(
["2012-04-01 09:00", "2012-04-02 09:00"], tz="US/Eastern"
)
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
# GH 7092
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
def test_reset_index_datetime(self):
# GH 3950
for tz in ["UTC", "Asia/Tokyo", "US/Eastern"]:
idx1 = pd.date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
idx2 = Index(range(5), name="idx2", dtype="int64")
idx = MultiIndex.from_arrays([idx1, idx2])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime.datetime(2011, 1, 1),
datetime.datetime(2011, 1, 2),
datetime.datetime(2011, 1, 3),
datetime.datetime(2011, 1, 4),
datetime.datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
tm.assert_frame_equal(df.reset_index(), expected)
idx3 = pd.date_range(
"1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
)
idx = MultiIndex.from_arrays([idx1, idx2, idx3])
df = DataFrame(
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
index=idx,
)
expected = DataFrame(
{
"idx1": [
datetime.datetime(2011, 1, 1),
datetime.datetime(2011, 1, 2),
datetime.datetime(2011, 1, 3),
datetime.datetime(2011, 1, 4),
datetime.datetime(2011, 1, 5),
],
"idx2": np.arange(5, dtype="int64"),
"idx3": [
datetime.datetime(2012, 1, 1),
datetime.datetime(2012, 2, 1),
datetime.datetime(2012, 3, 1),
datetime.datetime(2012, 4, 1),
datetime.datetime(2012, 5, 1),
],
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "idx3", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
expected["idx3"] = expected["idx3"].apply(
lambda d: Timestamp(d, tz="Europe/Paris")
)
tm.assert_frame_equal(df.reset_index(), expected)
# GH 7793
idx = MultiIndex.from_product(
[["a", "b"], pd.date_range("20130101", periods=3, tz=tz)]
)
df = DataFrame(
np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
)
expected = DataFrame(
{
"level_0": "a a a b b b".split(),
"level_1": [
datetime.datetime(2013, 1, 1),
datetime.datetime(2013, 1, 2),
datetime.datetime(2013, 1, 3),
]
* 2,
"a": np.arange(6, dtype="int64"),
},
columns=["level_0", "level_1", "a"],
)
expected["level_1"] = expected["level_1"].apply(
lambda d: Timestamp(d, freq="D", tz=tz)
)
tm.assert_frame_equal(df.reset_index(), expected)
def test_reset_index_period(self):
# GH 7746
idx = MultiIndex.from_product(
[pd.period_range("20130101", periods=3, freq="M"), list("abc")],
names=["month", "feature"],
)
df = DataFrame(
np.arange(9, dtype="int64").reshape(-1, 1), index=idx, columns=["a"]
)
expected = DataFrame(
{
"month": (
[pd.Period("2013-01", freq="M")] * 3
+ [pd.Period("2013-02", freq="M")] * 3
+ [pd.Period("2013-03", freq="M")] * 3
),
"feature": ["a", "b", "c"] * 3,
"a": np.arange(9, dtype="int64"),
},
columns=["month", "feature", "a"],
)
tm.assert_frame_equal(df.reset_index(), expected)
def test_reset_index_multiindex_columns(self):
levels = [["A", ""], ["B", "b"]]
df = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
result = df[["B"]].rename_axis("A").reset_index()
tm.assert_frame_equal(result, df)
# gh-16120: already existing column
msg = r"cannot insert \('A', ''\), already exists"
with pytest.raises(ValueError, match=msg):
df.rename_axis("A").reset_index()
# gh-16164: multiindex (tuple) full key
result = df.set_index([("A", "")]).reset_index()
tm.assert_frame_equal(result, df)
# with additional (unnamed) index level
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("level_0", "")])
)
expected = pd.concat([idx_col, df[[("B", "b"), ("A", "")]]], axis=1)
result = df.set_index([("B", "b")], append=True).reset_index()
tm.assert_frame_equal(result, expected)
# with index name which is a too long tuple...
msg = "Item must have length equal to number of levels."
with pytest.raises(ValueError, match=msg):
df.rename_axis([("C", "c", "i")]).reset_index()
# or too short...
levels = [["A", "a", ""], ["B", "b", "i"]]
df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
idx_col = DataFrame(
[[0], [1]], columns=MultiIndex.from_tuples([("C", "c", "ii")])
)
expected = pd.concat([idx_col, df2], axis=1)
result = df2.rename_axis([("C", "c")]).reset_index(col_fill="ii")
tm.assert_frame_equal(result, expected)
# ... which is incompatible with col_fill=None
with pytest.raises(
ValueError,
match=(
"col_fill=None is incompatible with "
r"incomplete column name \('C', 'c'\)"
),
):
df2.rename_axis([("C", "c")]).reset_index(col_fill=None)
# with col_level != 0
result = df2.rename_axis([("c", "ii")]).reset_index(col_level=1, col_fill="C")
tm.assert_frame_equal(result, expected)
def test_set_index_period(self):
# GH 6631
df = DataFrame(np.random.random(6))
idx1 = pd.period_range("2011-01-01", periods=3, freq="M")
idx1 = idx1.append(idx1)
idx2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
idx2 = idx2.append(idx2).append(idx2)
idx3 = pd.period_range("2005", periods=6, freq="A")
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = pd.period_range("2011-01-01", periods=3, freq="M")
expected2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
def test_repeat(self):
# GH 9361
# fixed by # GH 7891
m_idx = MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)])
data = ["a", "b", "c", "d"]
m_df = Series(data, index=m_idx)
assert m_df.repeat(3).shape == (3 * len(data),)
def test_subsets_multiindex_dtype(self):
# GH 20757
data = [["x", 1]]
columns = [("a", "b", np.nan), ("a", "c", 0.0)]
df = DataFrame(data, columns=pd.MultiIndex.from_tuples(columns))
expected = df.dtypes.a.b
result = df.a.b.dtypes
tm.assert_series_equal(result, expected)
class TestSorted(Base):
""" everything you wanted to test about sorting """
def test_sort_index_preserve_levels(self):
result = self.frame.sort_index()
assert result.index.names == self.frame.index.names
def test_sorting_repr_8017(self):
np.random.seed(0)
data = np.random.randn(3, 4)
for gen, extra in [
([1.0, 3.0, 2.0, 5.0], 4.0),
([1, 3, 2, 5], 4),
(
[
Timestamp("20130101"),
Timestamp("20130103"),
Timestamp("20130102"),
Timestamp("20130105"),
],
Timestamp("20130104"),
),
(["1one", "3one", "2one", "5one"], "4one"),
]:
columns = MultiIndex.from_tuples([("red", i) for i in gen])
df = DataFrame(data, index=list("def"), columns=columns)
df2 = pd.concat(
[
df,
DataFrame(
"world",
index=list("def"),
columns=MultiIndex.from_tuples([("red", extra)]),
),
],
axis=1,
)
# check that the repr is good
# make sure that we have a correct sparsified repr
# e.g. only 1 header of read
assert str(df2).splitlines()[0].split() == ["red"]
# GH 8017
# sorting fails after columns added
# construct single-dtype then sort
result = df.copy().sort_index(axis=1)
expected = df.iloc[:, [0, 2, 1, 3]]
tm.assert_frame_equal(result, expected)
result = df2.sort_index(axis=1)
expected = df2.iloc[:, [0, 2, 1, 4, 3]]
tm.assert_frame_equal(result, expected)
# setitem then sort
result = df.copy()
result[("red", extra)] = "world"
result = result.sort_index(axis=1)
tm.assert_frame_equal(result, expected)
def test_sort_non_lexsorted(self):
# degenerate case where we sort but don't
# have a satisfying result :<
# GH 15797
idx = MultiIndex(
[["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]
)
df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64")
assert df.index.is_lexsorted() is False
assert df.index.is_monotonic is False
sorted = df.sort_index()
assert sorted.index.is_lexsorted() is True
assert sorted.index.is_monotonic is True
expected = DataFrame(
{"col": [1, 4, 5, 2]},
index=MultiIndex.from_tuples(
[("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")]
),
dtype="int64",
)
result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"keys, expected",
[
(["b", "a"], [["b", "b", "a", "a"], [1, 2, 1, 2]]),
(["a", "b"], [["a", "a", "b", "b"], [1, 2, 1, 2]]),
((["a", "b"], [1, 2]), [["a", "a", "b", "b"], [1, 2, 1, 2]]),
((["a", "b"], [2, 1]), [["a", "a", "b", "b"], [2, 1, 2, 1]]),
((["b", "a"], [2, 1]), [["b", "b", "a", "a"], [2, 1, 2, 1]]),
((["b", "a"], [1, 2]), [["b", "b", "a", "a"], [1, 2, 1, 2]]),
((["c", "a"], [2, 1]), [["c", "a", "a"], [1, 2, 1]]),
],
)
@pytest.mark.parametrize("dim", ["index", "columns"])
def test_multilevel_index_loc_order(self, dim, keys, expected):
# GH 22797
# Try to respect order of keys given for MultiIndex.loc
kwargs = {dim: [["c", "a", "a", "b", "b"], [1, 1, 2, 1, 2]]}
df = pd.DataFrame(np.arange(25).reshape(5, 5), **kwargs,)
exp_index = MultiIndex.from_arrays(expected)
if dim == "index":
res = df.loc[keys, :]
tm.assert_index_equal(res.index, exp_index)
elif dim == "columns":
res = df.loc[:, keys]
tm.assert_index_equal(res.columns, exp_index)