1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/indexes/test_setops.py

97 lines
3.3 KiB

"""
The tests in this package are to ensure the proper resultant dtypes of
set operations.
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_dtype_equal
import pandas as pd
from pandas import Float64Index, Int64Index, RangeIndex, UInt64Index
import pandas._testing as tm
from pandas.api.types import pandas_dtype
COMPATIBLE_INCONSISTENT_PAIRS = {
(Int64Index, RangeIndex): (tm.makeIntIndex, tm.makeRangeIndex),
(Float64Index, Int64Index): (tm.makeFloatIndex, tm.makeIntIndex),
(Float64Index, RangeIndex): (tm.makeFloatIndex, tm.makeIntIndex),
(Float64Index, UInt64Index): (tm.makeFloatIndex, tm.makeUIntIndex),
}
def test_union_same_types(index):
# Union with a non-unique, non-monotonic index raises error
# Only needed for bool index factory
idx1 = index.sort_values()
idx2 = index.sort_values()
assert idx1.union(idx2).dtype == idx1.dtype
def test_union_different_types(index, index_fixture2):
# This test only considers combinations of indices
# GH 23525
idx1, idx2 = index, index_fixture2
type_pair = tuple(sorted([type(idx1), type(idx2)], key=lambda x: str(x)))
if type_pair in COMPATIBLE_INCONSISTENT_PAIRS:
pytest.xfail("This test only considers non compatible indexes.")
if any(isinstance(idx, pd.MultiIndex) for idx in (idx1, idx2)):
pytest.xfail("This test doesn't consider multiindixes.")
if is_dtype_equal(idx1.dtype, idx2.dtype):
pytest.xfail("This test only considers non matching dtypes.")
# A union with a CategoricalIndex (even as dtype('O')) and a
# non-CategoricalIndex can only be made if both indices are monotonic.
# This is true before this PR as well.
# Union with a non-unique, non-monotonic index raises error
# This applies to the boolean index
idx1 = idx1.sort_values()
idx2 = idx2.sort_values()
assert idx1.union(idx2).dtype == np.dtype("O")
assert idx2.union(idx1).dtype == np.dtype("O")
@pytest.mark.parametrize("idx_fact1,idx_fact2", COMPATIBLE_INCONSISTENT_PAIRS.values())
def test_compatible_inconsistent_pairs(idx_fact1, idx_fact2):
# GH 23525
idx1 = idx_fact1(10)
idx2 = idx_fact2(20)
res1 = idx1.union(idx2)
res2 = idx2.union(idx1)
assert res1.dtype in (idx1.dtype, idx2.dtype)
assert res2.dtype in (idx1.dtype, idx2.dtype)
@pytest.mark.parametrize(
"left, right, expected",
[
("int64", "int64", "int64"),
("int64", "uint64", "object"),
("int64", "float64", "float64"),
("uint64", "float64", "float64"),
("uint64", "uint64", "uint64"),
("float64", "float64", "float64"),
("datetime64[ns]", "int64", "object"),
("datetime64[ns]", "uint64", "object"),
("datetime64[ns]", "float64", "object"),
("datetime64[ns, CET]", "int64", "object"),
("datetime64[ns, CET]", "uint64", "object"),
("datetime64[ns, CET]", "float64", "object"),
("Period[D]", "int64", "object"),
("Period[D]", "uint64", "object"),
("Period[D]", "float64", "object"),
],
)
def test_union_dtypes(left, right, expected):
left = pandas_dtype(left)
right = pandas_dtype(right)
a = pd.Index([], dtype=left)
b = pd.Index([], dtype=right)
result = (a | b).dtype
assert result == expected