Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
31 lines
1.1 KiB
31 lines
1.1 KiB
def _check_mixed_float(df, dtype=None):
|
|
# float16 are most likely to be upcasted to float32
|
|
dtypes = dict(A="float32", B="float32", C="float16", D="float64")
|
|
if isinstance(dtype, str):
|
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
|
elif isinstance(dtype, dict):
|
|
dtypes.update(dtype)
|
|
if dtypes.get("A"):
|
|
assert df.dtypes["A"] == dtypes["A"]
|
|
if dtypes.get("B"):
|
|
assert df.dtypes["B"] == dtypes["B"]
|
|
if dtypes.get("C"):
|
|
assert df.dtypes["C"] == dtypes["C"]
|
|
if dtypes.get("D"):
|
|
assert df.dtypes["D"] == dtypes["D"]
|
|
|
|
|
|
def _check_mixed_int(df, dtype=None):
|
|
dtypes = dict(A="int32", B="uint64", C="uint8", D="int64")
|
|
if isinstance(dtype, str):
|
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
|
elif isinstance(dtype, dict):
|
|
dtypes.update(dtype)
|
|
if dtypes.get("A"):
|
|
assert df.dtypes["A"] == dtypes["A"]
|
|
if dtypes.get("B"):
|
|
assert df.dtypes["B"] == dtypes["B"]
|
|
if dtypes.get("C"):
|
|
assert df.dtypes["C"] == dtypes["C"]
|
|
if dtypes.get("D"):
|
|
assert df.dtypes["D"] == dtypes["D"]
|
|
|