1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/extension/test_integer.py

257 lines
7.2 KiB

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import integer_array
from pandas.core.arrays.integer import (
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
UInt8Dtype,
UInt16Dtype,
UInt32Dtype,
UInt64Dtype,
)
from pandas.tests.extension import base
def make_data():
return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100]
@pytest.fixture(
params=[
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
UInt8Dtype,
UInt16Dtype,
UInt32Dtype,
UInt64Dtype,
]
)
def dtype(request):
return request.param()
@pytest.fixture
def data(dtype):
return integer_array(make_data(), dtype=dtype)
@pytest.fixture
def data_for_twos(dtype):
return integer_array(np.ones(100) * 2, dtype=dtype)
@pytest.fixture
def data_missing(dtype):
return integer_array([pd.NA, 1], dtype=dtype)
@pytest.fixture
def data_for_sorting(dtype):
return integer_array([1, 2, 0], dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
return integer_array([1, pd.NA, 0], dtype=dtype)
@pytest.fixture
def na_cmp():
# we are pd.NA
return lambda x, y: x is pd.NA and y is pd.NA
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype):
b = 1
a = 0
c = 2
na = pd.NA
return integer_array([b, b, na, na, a, a, b, c], dtype=dtype)
class TestDtype(base.BaseDtypeTests):
@pytest.mark.skip(reason="using multiple dtypes")
def test_is_dtype_unboxes_dtype(self):
# we have multiple dtypes, so skip
pass
class TestArithmeticOps(base.BaseArithmeticOpsTests):
def check_opname(self, s, op_name, other, exc=None):
# overwriting to indicate ops don't raise an error
super().check_opname(s, op_name, other, exc=None)
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
if s.dtype.is_unsigned_integer and (op_name == "__rsub__"):
# TODO see https://github.com/pandas-dev/pandas/issues/22023
pytest.skip("unsigned subtraction gives negative values")
if (
hasattr(other, "dtype")
and not is_extension_array_dtype(other.dtype)
and pd.api.types.is_integer_dtype(other.dtype)
):
# other is np.int64 and would therefore always result in
# upcasting, so keeping other as same numpy_dtype
other = other.astype(s.dtype.numpy_dtype)
result = op(s, other)
expected = s.combine(other, op)
if op_name in ("__rtruediv__", "__truediv__", "__div__"):
expected = expected.fillna(np.nan).astype(float)
if op_name == "__rtruediv__":
# TODO reverse operators result in object dtype
result = result.astype(float)
elif op_name.startswith("__r"):
# TODO reverse operators result in object dtype
# see https://github.com/pandas-dev/pandas/issues/22024
expected = expected.astype(s.dtype)
result = result.astype(s.dtype)
else:
# combine method result in 'biggest' (int64) dtype
expected = expected.astype(s.dtype)
pass
if (op_name == "__rpow__") and isinstance(other, pd.Series):
# TODO pow on Int arrays gives different result with NA
# see https://github.com/pandas-dev/pandas/issues/22022
result = result.fillna(1)
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def _check_divmod_op(self, s, op, other, exc=None):
super()._check_divmod_op(s, op, other, None)
@pytest.mark.skip(reason="intNA does not error on ops")
def test_error(self, data, all_arithmetic_operators):
# other specific errors tested in the integer array specific tests
pass
class TestComparisonOps(base.BaseComparisonOpsTests):
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
result = op(s, other)
# Override to do the astype to boolean
expected = s.combine(other, op).astype("boolean")
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def check_opname(self, s, op_name, other, exc=None):
super().check_opname(s, op_name, other, exc=None)
def _compare_other(self, s, data, op_name, other):
self.check_opname(s, op_name, other)
class TestInterface(base.BaseInterfaceTests):
pass
class TestConstructors(base.BaseConstructorsTests):
pass
class TestReshaping(base.BaseReshapingTests):
pass
# for test_concat_mixed_dtypes test
# concat of an Integer and Int coerces to object dtype
# TODO(jreback) once integrated this would
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
pass
class TestMissing(base.BaseMissingTests):
pass
class TestMethods(base.BaseMethodsTests):
@pytest.mark.skip(reason="uses nullable integer")
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
expected.index = expected.index.astype(all_data.dtype)
self.assert_series_equal(result, expected)
class TestCasting(base.BaseCastingTests):
pass
class TestGroupby(base.BaseGroupbyTests):
pass
class TestNumericReduce(base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
# overwrite to ensure pd.NA is tested instead of np.nan
# https://github.com/pandas-dev/pandas/issues/30958
result = getattr(s, op_name)(skipna=skipna)
if not skipna and s.isna().any():
expected = pd.NA
else:
expected = getattr(s.dropna().astype("int64"), op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
class TestBooleanReduce(base.BaseBooleanReduceTests):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestParsing(base.BaseParsingTests):
pass