Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.0 KiB
81 lines
2.0 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.core.dtypes import dtypes
|
|
from pandas.core.dtypes.common import is_extension_array_dtype
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import ExtensionArray
|
|
|
|
|
|
class DummyDtype(dtypes.ExtensionDtype):
|
|
pass
|
|
|
|
|
|
class DummyArray(ExtensionArray):
|
|
def __init__(self, data):
|
|
self.data = data
|
|
|
|
def __array__(self, dtype):
|
|
return self.data
|
|
|
|
@property
|
|
def dtype(self):
|
|
return DummyDtype()
|
|
|
|
def astype(self, dtype, copy=True):
|
|
# we don't support anything but a single dtype
|
|
if isinstance(dtype, DummyDtype):
|
|
if copy:
|
|
return type(self)(self.data)
|
|
return self
|
|
|
|
return np.array(self, dtype=dtype, copy=copy)
|
|
|
|
|
|
class TestExtensionArrayDtype:
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[
|
|
pd.Categorical([]),
|
|
pd.Categorical([]).dtype,
|
|
pd.Series(pd.Categorical([])),
|
|
DummyDtype(),
|
|
DummyArray(np.array([1, 2])),
|
|
],
|
|
)
|
|
def test_is_extension_array_dtype(self, values):
|
|
assert is_extension_array_dtype(values)
|
|
|
|
@pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
|
|
def test_is_not_extension_array_dtype(self, values):
|
|
assert not is_extension_array_dtype(values)
|
|
|
|
|
|
def test_astype():
|
|
|
|
arr = DummyArray(np.array([1, 2, 3]))
|
|
expected = np.array([1, 2, 3], dtype=object)
|
|
|
|
result = arr.astype(object)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
result = arr.astype("object")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
def test_astype_no_copy():
|
|
arr = DummyArray(np.array([1, 2, 3], dtype=np.int64))
|
|
result = arr.astype(arr.dtype, copy=False)
|
|
|
|
assert arr is result
|
|
|
|
result = arr.astype(arr.dtype)
|
|
assert arr is not result
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [dtypes.CategoricalDtype(), dtypes.IntervalDtype()])
|
|
def test_is_extension_array_dtype(dtype):
|
|
assert isinstance(dtype, dtypes.ExtensionDtype)
|
|
assert is_extension_array_dtype(dtype)
|
|
|