1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/arithmetic/test_object.py

376 lines
12 KiB

# Arithmetic tests for DataFrame/Series/Index/Array classes that should
# behave identically.
# Specifically for object dtype
import datetime
from decimal import Decimal
import operator
import numpy as np
import pytest
import pandas as pd
from pandas import Series, Timestamp
import pandas._testing as tm
from pandas.core import ops
# ------------------------------------------------------------------
# Comparisons
class TestObjectComparisons:
def test_comparison_object_numeric_nas(self):
ser = Series(np.random.randn(10), dtype=object)
shifted = ser.shift(2)
ops = ["lt", "le", "gt", "ge", "eq", "ne"]
for op in ops:
func = getattr(operator, op)
result = func(ser, shifted)
expected = func(ser.astype(float), shifted.astype(float))
tm.assert_series_equal(result, expected)
def test_object_comparisons(self):
ser = Series(["a", "b", np.nan, "c", "a"])
result = ser == "a"
expected = Series([True, False, False, False, True])
tm.assert_series_equal(result, expected)
result = ser < "a"
expected = Series([False, False, False, False, False])
tm.assert_series_equal(result, expected)
result = ser != "a"
expected = -(ser == "a")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", [None, object])
def test_more_na_comparisons(self, dtype):
left = Series(["a", np.nan, "c"], dtype=dtype)
right = Series(["a", np.nan, "d"], dtype=dtype)
result = left == right
expected = Series([True, False, False])
tm.assert_series_equal(result, expected)
result = left != right
expected = Series([False, True, True])
tm.assert_series_equal(result, expected)
result = left == np.nan
expected = Series([False, False, False])
tm.assert_series_equal(result, expected)
result = left != np.nan
expected = Series([True, True, True])
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Arithmetic
class TestArithmetic:
# TODO: parametrize
def test_pow_ops_object(self):
# GH#22922
# pow is weird with masking & 1, so testing here
a = Series([1, np.nan, 1, np.nan], dtype=object)
b = Series([1, np.nan, np.nan, 1], dtype=object)
result = a ** b
expected = Series(a.values ** b.values, dtype=object)
tm.assert_series_equal(result, expected)
result = b ** a
expected = Series(b.values ** a.values, dtype=object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("op", [operator.add, ops.radd])
@pytest.mark.parametrize("other", ["category", "Int64"])
def test_add_extension_scalar(self, other, box_with_array, op):
# GH#22378
# Check that scalars satisfying is_extension_array_dtype(obj)
# do not incorrectly try to dispatch to an ExtensionArray operation
arr = pd.Series(["a", "b", "c"])
expected = pd.Series([op(x, other) for x in arr])
arr = tm.box_expected(arr, box_with_array)
expected = tm.box_expected(expected, box_with_array)
result = op(arr, other)
tm.assert_equal(result, expected)
def test_objarr_add_str(self, box):
ser = pd.Series(["x", np.nan, "x"])
expected = pd.Series(["xa", np.nan, "xa"])
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = ser + "a"
tm.assert_equal(result, expected)
def test_objarr_radd_str(self, box):
ser = pd.Series(["x", np.nan, "x"])
expected = pd.Series(["ax", np.nan, "ax"])
ser = tm.box_expected(ser, box)
expected = tm.box_expected(expected, box)
result = "a" + ser
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
[1, 2, 3],
[1.1, 2.2, 3.3],
[Timestamp("2011-01-01"), Timestamp("2011-01-02"), pd.NaT],
["x", "y", 1],
],
)
@pytest.mark.parametrize("dtype", [None, object])
def test_objarr_radd_str_invalid(self, dtype, data, box_with_array):
ser = Series(data, dtype=dtype)
ser = tm.box_expected(ser, box_with_array)
msg = (
"can only concatenate str|"
"did not contain a loop with signature matching types|"
"unsupported operand type|"
"must be str"
)
with pytest.raises(TypeError, match=msg):
"foo_" + ser
@pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub])
def test_objarr_add_invalid(self, op, box_with_array):
# invalid ops
box = box_with_array
obj_ser = tm.makeObjectSeries()
obj_ser.name = "objects"
obj_ser = tm.box_expected(obj_ser, box)
msg = "can only concatenate str|unsupported operand type|must be str"
with pytest.raises(Exception, match=msg):
op(obj_ser, 1)
with pytest.raises(Exception, match=msg):
op(obj_ser, np.array(1, dtype=np.int64))
# TODO: Moved from tests.series.test_operators; needs cleanup
def test_operators_na_handling(self):
ser = Series(["foo", "bar", "baz", np.nan])
result = "prefix_" + ser
expected = pd.Series(["prefix_foo", "prefix_bar", "prefix_baz", np.nan])
tm.assert_series_equal(result, expected)
result = ser + "_suffix"
expected = pd.Series(["foo_suffix", "bar_suffix", "baz_suffix", np.nan])
tm.assert_series_equal(result, expected)
# TODO: parametrize over box
@pytest.mark.parametrize("dtype", [None, object])
def test_series_with_dtype_radd_timedelta(self, dtype):
# note this test is _not_ aimed at timedelta64-dtyped Series
ser = pd.Series(
[pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")],
dtype=dtype,
)
expected = pd.Series(
[pd.Timedelta("4 days"), pd.Timedelta("5 days"), pd.Timedelta("6 days")]
)
result = pd.Timedelta("3 days") + ser
tm.assert_series_equal(result, expected)
result = ser + pd.Timedelta("3 days")
tm.assert_series_equal(result, expected)
# TODO: cleanup & parametrize over box
def test_mixed_timezone_series_ops_object(self):
# GH#13043
ser = pd.Series(
[
pd.Timestamp("2015-01-01", tz="US/Eastern"),
pd.Timestamp("2015-01-01", tz="Asia/Tokyo"),
],
name="xxx",
)
assert ser.dtype == object
exp = pd.Series(
[
pd.Timestamp("2015-01-02", tz="US/Eastern"),
pd.Timestamp("2015-01-02", tz="Asia/Tokyo"),
],
name="xxx",
)
tm.assert_series_equal(ser + pd.Timedelta("1 days"), exp)
tm.assert_series_equal(pd.Timedelta("1 days") + ser, exp)
# object series & object series
ser2 = pd.Series(
[
pd.Timestamp("2015-01-03", tz="US/Eastern"),
pd.Timestamp("2015-01-05", tz="Asia/Tokyo"),
],
name="xxx",
)
assert ser2.dtype == object
exp = pd.Series([pd.Timedelta("2 days"), pd.Timedelta("4 days")], name="xxx")
tm.assert_series_equal(ser2 - ser, exp)
tm.assert_series_equal(ser - ser2, -exp)
ser = pd.Series(
[pd.Timedelta("01:00:00"), pd.Timedelta("02:00:00")],
name="xxx",
dtype=object,
)
assert ser.dtype == object
exp = pd.Series(
[pd.Timedelta("01:30:00"), pd.Timedelta("02:30:00")], name="xxx"
)
tm.assert_series_equal(ser + pd.Timedelta("00:30:00"), exp)
tm.assert_series_equal(pd.Timedelta("00:30:00") + ser, exp)
# TODO: cleanup & parametrize over box
def test_iadd_preserves_name(self):
# GH#17067, GH#19723 __iadd__ and __isub__ should preserve index name
ser = pd.Series([1, 2, 3])
ser.index.name = "foo"
ser.index += 1
assert ser.index.name == "foo"
ser.index -= 1
assert ser.index.name == "foo"
def test_add_string(self):
# from bug report
index = pd.Index(["a", "b", "c"])
index2 = index + "foo"
assert "a" not in index2
assert "afoo" in index2
def test_iadd_string(self):
index = pd.Index(["a", "b", "c"])
# doesn't fail test unless there is a check before `+=`
assert "a" in index
index += "_x"
assert "a_x" in index
def test_add(self):
index = tm.makeStringIndex(100)
expected = pd.Index(index.values * 2)
tm.assert_index_equal(index + index, expected)
tm.assert_index_equal(index + index.tolist(), expected)
tm.assert_index_equal(index.tolist() + index, expected)
# test add and radd
index = pd.Index(list("abc"))
expected = pd.Index(["a1", "b1", "c1"])
tm.assert_index_equal(index + "1", expected)
expected = pd.Index(["1a", "1b", "1c"])
tm.assert_index_equal("1" + index, expected)
def test_sub_fail(self):
index = tm.makeStringIndex(100)
msg = "unsupported operand type|Cannot broadcast"
with pytest.raises(TypeError, match=msg):
index - "a"
with pytest.raises(TypeError, match=msg):
index - index
with pytest.raises(TypeError, match=msg):
index - index.tolist()
with pytest.raises(TypeError, match=msg):
index.tolist() - index
def test_sub_object(self):
# GH#19369
index = pd.Index([Decimal(1), Decimal(2)])
expected = pd.Index([Decimal(0), Decimal(1)])
result = index - Decimal(1)
tm.assert_index_equal(result, expected)
result = index - pd.Index([Decimal(1), Decimal(1)])
tm.assert_index_equal(result, expected)
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
index - "foo"
with pytest.raises(TypeError, match=msg):
index - np.array([2, "foo"])
def test_rsub_object(self):
# GH#19369
index = pd.Index([Decimal(1), Decimal(2)])
expected = pd.Index([Decimal(1), Decimal(0)])
result = Decimal(2) - index
tm.assert_index_equal(result, expected)
result = np.array([Decimal(2), Decimal(2)]) - index
tm.assert_index_equal(result, expected)
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
"foo" - index
with pytest.raises(TypeError, match=msg):
np.array([True, pd.Timestamp.now()]) - index
class MyIndex(pd.Index):
# Simple index subclass that tracks ops calls.
_calls: int
@classmethod
def _simple_new(cls, values, name=None, dtype=None):
result = object.__new__(cls)
result._data = values
result._index_data = values
result._name = name
result._calls = 0
return result._reset_identity()
def __add__(self, other):
self._calls += 1
return self._simple_new(self._index_data)
def __radd__(self, other):
return self.__add__(other)
@pytest.mark.parametrize(
"other",
[
[datetime.timedelta(1), datetime.timedelta(2)],
[datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1, 2)],
[pd.Period("2000"), pd.Period("2001")],
["a", "b"],
],
ids=["timedelta", "datetime", "period", "object"],
)
def test_index_ops_defer_to_unknown_subclasses(other):
# https://github.com/pandas-dev/pandas/issues/31109
values = np.array(
[datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)], dtype=object
)
a = MyIndex._simple_new(values)
other = pd.Index(other)
result = other + a
assert isinstance(result, MyIndex)
assert a._calls == 1