Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
3.9 KiB
133 lines
3.9 KiB
"""
|
|
Read SAS sas7bdat or xport files.
|
|
"""
|
|
from abc import ABCMeta, abstractmethod
|
|
from typing import TYPE_CHECKING, Optional, Union, overload
|
|
|
|
from pandas._typing import FilePathOrBuffer, Label
|
|
|
|
from pandas.io.common import stringify_path
|
|
|
|
if TYPE_CHECKING:
|
|
from pandas import DataFrame # noqa: F401
|
|
|
|
|
|
# TODO(PY38): replace with Protocol in Python 3.8
|
|
class ReaderBase(metaclass=ABCMeta):
|
|
"""
|
|
Protocol for XportReader and SAS7BDATReader classes.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def read(self, nrows=None):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close(self):
|
|
pass
|
|
|
|
|
|
@overload
|
|
def read_sas(
|
|
filepath_or_buffer: FilePathOrBuffer,
|
|
format: Optional[str] = ...,
|
|
index: Optional[Label] = ...,
|
|
encoding: Optional[str] = ...,
|
|
chunksize: int = ...,
|
|
iterator: bool = ...,
|
|
) -> ReaderBase:
|
|
...
|
|
|
|
|
|
@overload
|
|
def read_sas(
|
|
filepath_or_buffer: FilePathOrBuffer,
|
|
format: Optional[str] = ...,
|
|
index: Optional[Label] = ...,
|
|
encoding: Optional[str] = ...,
|
|
chunksize: None = ...,
|
|
iterator: bool = ...,
|
|
) -> Union["DataFrame", ReaderBase]:
|
|
...
|
|
|
|
|
|
def read_sas(
|
|
filepath_or_buffer: FilePathOrBuffer,
|
|
format: Optional[str] = None,
|
|
index: Optional[Label] = None,
|
|
encoding: Optional[str] = None,
|
|
chunksize: Optional[int] = None,
|
|
iterator: bool = False,
|
|
) -> Union["DataFrame", ReaderBase]:
|
|
"""
|
|
Read SAS files stored as either XPORT or SAS7BDAT format files.
|
|
|
|
Parameters
|
|
----------
|
|
filepath_or_buffer : str, path object or file-like object
|
|
Any valid string path is acceptable. The string could be a URL. Valid
|
|
URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
|
expected. A local file could be:
|
|
``file://localhost/path/to/table.sas``.
|
|
|
|
If you want to pass in a path object, pandas accepts any
|
|
``os.PathLike``.
|
|
|
|
By file-like object, we refer to objects with a ``read()`` method,
|
|
such as a file handler (e.g. via builtin ``open`` function)
|
|
or ``StringIO``.
|
|
format : str {'xport', 'sas7bdat'} or None
|
|
If None, file format is inferred from file extension. If 'xport' or
|
|
'sas7bdat', uses the corresponding format.
|
|
index : identifier of index column, defaults to None
|
|
Identifier of column that should be used as index of the DataFrame.
|
|
encoding : str, default is None
|
|
Encoding for text data. If None, text data are stored as raw bytes.
|
|
chunksize : int
|
|
Read file `chunksize` lines at a time, returns iterator.
|
|
iterator : bool, defaults to False
|
|
If True, returns an iterator for reading the file incrementally.
|
|
|
|
Returns
|
|
-------
|
|
DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
|
|
or XportReader
|
|
"""
|
|
if format is None:
|
|
buffer_error_msg = (
|
|
"If this is a buffer object rather "
|
|
"than a string name, you must specify a format string"
|
|
)
|
|
filepath_or_buffer = stringify_path(filepath_or_buffer)
|
|
if not isinstance(filepath_or_buffer, str):
|
|
raise ValueError(buffer_error_msg)
|
|
fname = filepath_or_buffer.lower()
|
|
if fname.endswith(".xpt"):
|
|
format = "xport"
|
|
elif fname.endswith(".sas7bdat"):
|
|
format = "sas7bdat"
|
|
else:
|
|
raise ValueError("unable to infer format of SAS file")
|
|
|
|
reader: ReaderBase
|
|
if format.lower() == "xport":
|
|
from pandas.io.sas.sas_xport import XportReader
|
|
|
|
reader = XportReader(
|
|
filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
|
|
)
|
|
elif format.lower() == "sas7bdat":
|
|
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
|
|
|
reader = SAS7BDATReader(
|
|
filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
|
|
)
|
|
else:
|
|
raise ValueError("unknown SAS format")
|
|
|
|
if iterator or chunksize:
|
|
return reader
|
|
|
|
data = reader.read()
|
|
reader.close()
|
|
return data
|
|
|