Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
30 lines
1.0 KiB
30 lines
1.0 KiB
import os
|
|
import glob
|
|
|
|
from PyCTBN.PyCTBN.json_importer import JsonImporter
|
|
from PyCTBN.PyCTBN.sample_path import SamplePath
|
|
from PyCTBN.PyCTBN.structure_estimator import StructureEstimator
|
|
|
|
|
|
def structure_estimation_example():
|
|
|
|
# read the json files in ./data path
|
|
read_files = glob.glob(os.path.join('./data', "*.json"))
|
|
# initialize a JsonImporter object for the first file
|
|
importer = JsonImporter(read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
|
|
# import the data at index 0 of the outer json array
|
|
importer.import_data(0)
|
|
# construct a SamplePath Object passing a filled AbstractImporter
|
|
s1 = SamplePath(importer)
|
|
# build the trajectories
|
|
s1.build_trajectories()
|
|
# build the real structure
|
|
s1.build_structure()
|
|
# construct a StructureEstimator object
|
|
se1 = StructureEstimator(s1, 0.1, 0.1)
|
|
# call the ctpc algorithm
|
|
se1.ctpc_algorithm()
|
|
# the adjacency matrix of the estimated structure
|
|
print(se1.adjacency_matrix())
|
|
# save results to a json file
|
|
se1.save_results()
|
|
|