1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/test_parameters_estimator.py

69 lines
2.6 KiB

import sys
sys.path.append("../classes/")
import unittest
import numpy as np
import glob
import os
import network_graph as ng
import sample_path as sp
import set_of_cims as sofc
import parameters_estimator as pe
import json_importer as ji
class TestParametersEstimatior(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.array_indx = 8
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name',
cls.array_indx)
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories()
cls.s1.build_structure()
print(cls.s1.structure.edges)
print(cls.s1.structure.nodes_values)
cls.g1 = ng.NetworkGraph(cls.s1.structure)
cls.g1.init_graph()
def test_fast_init(self):
for node in self.g1.nodes:
g = ng.NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = pe.ParametersEstimator(self.s1.trajectories, g)
self.assertEqual(p1._trajectories, self.s1.trajectories)
self.assertEqual(p1._net_graph, g)
self.assertIsNone(p1._single_set_of_cims)
p1.fast_init(node)
self.assertIsInstance(p1._single_set_of_cims, sofc.SetOfCims)
def test_compute_parameters_for_node(self):
for indx, node in enumerate(self.g1.nodes):
print(node)
g = ng.NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = pe.ParametersEstimator(self.s1.trajectories, g)
p1.fast_init(node)
sofc1 = p1.compute_parameters_for_node(node)
sampled_cims = self.aux_import_sampled_cims('dyn.cims')
sc = list(sampled_cims.values())
self.equality_of_cims_of_node(sc[indx], sofc1._actual_cims)
def equality_of_cims_of_node(self, sampled_cims, estimated_cims):
self.assertEqual(len(sampled_cims), len(estimated_cims))
for c1, c2 in zip(sampled_cims, estimated_cims):
self.cim_equality_test(c1, c2.cim)
def cim_equality_test(self, cim1, cim2):
for r1, r2 in zip(cim1, cim2):
self.assertTrue(np.all(np.isclose(r1, r2, 1e-01, 1e-01) == True))
def aux_import_sampled_cims(self, cims_label):
i1 = ji.JsonImporter(self.read_files[0], '', '', '', '', '', self.array_indx)
raw_data = i1.read_json_file()
return i1.import_sampled_cims(raw_data, self.array_indx, cims_label)
if __name__ == '__main__':
unittest.main()