Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.4 KiB
134 lines
4.4 KiB
import sys
|
|
sys.path.append("../../classes/")
|
|
import glob
|
|
import math
|
|
import os
|
|
import unittest
|
|
|
|
import networkx as nx
|
|
import numpy as np
|
|
import psutil
|
|
from line_profiler import LineProfiler
|
|
import copy
|
|
|
|
import utility.cache as ch
|
|
import structure_graph.sample_path as sp
|
|
import estimators.structure_score_based_estimator as se
|
|
import estimators.structure_constraint_based_estimator as se_
|
|
import utility.json_importer as ji
|
|
|
|
|
|
|
|
class TestTabuSearch(unittest.TestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
pass
|
|
|
|
|
|
|
|
def test_constr(self):
|
|
|
|
list_vals= [3,4,5,6,10,15,20]
|
|
|
|
list_card=[[3,"ternary"],[4,"quaternary"]]
|
|
|
|
list_dens = [["0.1","_01"],["0.2","_02"], ["0.3",""], ["0.4","_04"] ]
|
|
|
|
for card in list_card:
|
|
for dens in list_dens:
|
|
|
|
list_vals= [3,4,5,6,10,15,20]
|
|
|
|
if card[0]==4:
|
|
list_vals.remove(20)
|
|
|
|
for var_n in list_vals:
|
|
|
|
patience = 20
|
|
|
|
var_number= var_n
|
|
|
|
if var_number > 11:
|
|
patience = 25
|
|
|
|
if var_number > 16:
|
|
patience = 35
|
|
|
|
|
|
cardinality = card[0]
|
|
cardinality_string = card[1]
|
|
|
|
density= dens[0]
|
|
density_string = dens[1]
|
|
|
|
constraint = 2
|
|
|
|
index = 0
|
|
num_networks=10
|
|
|
|
if var_number > 9:
|
|
num_networks=3
|
|
|
|
while index < num_networks:
|
|
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
|
|
self.importer = ji.JsonImporter(f"../../data/networks_and_trajectories_{cardinality_string}_data{density_string}_{var_number}.json",
|
|
'samples', 'dyn.str', 'variables', 'Time', 'Name', index )
|
|
self.s1 = sp.SamplePath(self.importer)
|
|
self.s1.build_trajectories()
|
|
self.s1.build_structure()
|
|
|
|
|
|
true_edges = copy.deepcopy(self.s1.structure.edges)
|
|
true_edges = set(map(tuple, true_edges))
|
|
|
|
s2= copy.deepcopy(self.s1)
|
|
|
|
se1 = se.StructureScoreBasedEstimator(self.s1,1,1)
|
|
edges_score = se1.estimate_structure(
|
|
max_parents = None,
|
|
iterations_number = 100,
|
|
patience = patience,
|
|
tabu_length = var_number,
|
|
tabu_rules_duration = var_number,
|
|
optimizer = 'tabu'
|
|
)
|
|
|
|
se2 = se_.StructureConstraintBasedEstimator(s2, 0.1, 0.1)
|
|
edges_constraint = se2.estimate_structure()
|
|
|
|
set_list_edges = set.union(edges_constraint,edges_score)
|
|
|
|
|
|
n_added_fake_edges = len(set_list_edges.difference(true_edges))
|
|
|
|
n_missing_edges = len(true_edges.difference(set_list_edges))
|
|
|
|
n_true_positive = len(true_edges) - n_missing_edges
|
|
|
|
precision = n_true_positive / (n_true_positive + n_added_fake_edges)
|
|
|
|
recall = n_true_positive / (n_true_positive + n_missing_edges)
|
|
|
|
f1_measure = round(2* (precision*recall) / (precision+recall),3)
|
|
|
|
# print(f"n archi reali non trovati: {n_missing_edges}")
|
|
# print(f"n archi non reali aggiunti: {n_added_fake_edges}")
|
|
print(true_edges)
|
|
print(set_list_edges)
|
|
print(f"precision: {precision} ")
|
|
print(f"recall: {recall} ")
|
|
|
|
|
|
with open("../results/results.csv", 'a+') as fi:
|
|
fi.write(f"\n2,{constraint},{var_number},{density},{cardinality},{index},{f1_measure},{round(precision,3)},{round(recall,3)}")
|
|
|
|
index += 1
|
|
|
|
self.assertEqual(set_list_edges, true_edges)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|
|
|