1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/simulators/test_ensambled_model_all.py

134 lines
4.4 KiB

import sys
sys.path.append("../../classes/")
import glob
import math
import os
import unittest
import networkx as nx
import numpy as np
import psutil
from line_profiler import LineProfiler
import copy
import utility.cache as ch
import structure_graph.sample_path as sp
import estimators.structure_score_based_estimator as se
import estimators.structure_constraint_based_estimator as se_
import utility.json_importer as ji
class TestTabuSearch(unittest.TestCase):
@classmethod
def setUpClass(cls):
pass
def test_constr(self):
list_vals= [3,4,5,6,10,15,20]
list_card=[[3,"ternary"],[4,"quaternary"]]
list_dens = [["0.1","_01"],["0.2","_02"], ["0.3",""], ["0.4","_04"] ]
for card in list_card:
for dens in list_dens:
list_vals= [3,4,5,6,10,15,20]
if card[0]==4:
list_vals.remove(20)
for var_n in list_vals:
patience = 20
var_number= var_n
if var_number > 11:
patience = 25
if var_number > 16:
patience = 35
cardinality = card[0]
cardinality_string = card[1]
density= dens[0]
density_string = dens[1]
constraint = 2
index = 0
num_networks=10
if var_number > 9:
num_networks=3
while index < num_networks:
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
self.importer = ji.JsonImporter(f"../../data/networks_and_trajectories_{cardinality_string}_data{density_string}_{var_number}.json",
'samples', 'dyn.str', 'variables', 'Time', 'Name', index )
self.s1 = sp.SamplePath(self.importer)
self.s1.build_trajectories()
self.s1.build_structure()
true_edges = copy.deepcopy(self.s1.structure.edges)
true_edges = set(map(tuple, true_edges))
s2= copy.deepcopy(self.s1)
se1 = se.StructureScoreBasedEstimator(self.s1,1,1)
edges_score = se1.estimate_structure(
max_parents = None,
iterations_number = 100,
patience = patience,
tabu_length = var_number,
tabu_rules_duration = var_number,
optimizer = 'tabu'
)
se2 = se_.StructureConstraintBasedEstimator(s2, 0.1, 0.1)
edges_constraint = se2.estimate_structure()
set_list_edges = set.union(edges_constraint,edges_score)
n_added_fake_edges = len(set_list_edges.difference(true_edges))
n_missing_edges = len(true_edges.difference(set_list_edges))
n_true_positive = len(true_edges) - n_missing_edges
precision = n_true_positive / (n_true_positive + n_added_fake_edges)
recall = n_true_positive / (n_true_positive + n_missing_edges)
f1_measure = round(2* (precision*recall) / (precision+recall),3)
# print(f"n archi reali non trovati: {n_missing_edges}")
# print(f"n archi non reali aggiunti: {n_added_fake_edges}")
print(true_edges)
print(set_list_edges)
print(f"precision: {precision} ")
print(f"recall: {recall} ")
with open("../results/results.csv", 'a+') as fi:
fi.write(f"\n2,{constraint},{var_number},{density},{cardinality},{index},{f1_measure},{round(precision,3)},{round(recall,3)}")
index += 1
self.assertEqual(set_list_edges, true_edges)
if __name__ == '__main__':
unittest.main()