Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
42 lines
847 B
42 lines
847 B
import numpy as np
|
|
import sample_path as sp
|
|
import networkx as nx
|
|
import os
|
|
|
|
|
|
class NetworkGraph():
|
|
"""
|
|
Rappresenta un grafo dinamico con la seguente struttura:
|
|
|
|
:sample_path: le traiettorie/a da cui costruire il grafo
|
|
:graph: la struttura dinamica che definisce il grafo
|
|
|
|
"""
|
|
|
|
def __init__(self, sample_path):
|
|
self.sample_path = sample_path
|
|
self.graph = nx.DiGraph()
|
|
|
|
|
|
def init_graph(self):
|
|
self.sample_path.build_trajectories()
|
|
self.sample_path.build_structure()
|
|
self.add_edges(self.sample_path.structure.list_of_edges())
|
|
|
|
def add_edges(self, list_of_edges):
|
|
self.graph.add_edges_from(list_of_edges)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
######Veloci Tests#######
|
|
os.getcwd()
|
|
os.chdir('..')
|
|
path = os.getcwd() + '/data'
|
|
s1 = sp.SamplePath(path)
|
|
|
|
g1 = NetworkGraph(s1)
|
|
g1.init_graph()
|
|
|
|
|