Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
8.7 KiB
198 lines
8.7 KiB
|
|
import networkx as nx
|
|
import numpy as np
|
|
|
|
|
|
class NetworkGraph():
|
|
"""
|
|
Rappresenta il grafo che contiene i nodi e gli archi presenti nell'oggetto Structure graph_struct.
|
|
Ogni nodo contine la label node_id, al nodo è anche associato un id numerico progressivo indx che rappresenta la posizione
|
|
dei sui valori nella colonna indx della traj
|
|
|
|
:graph_struct: l'oggetto Structure da cui estrarre i dati per costruire il grafo graph
|
|
:graph: il grafo
|
|
|
|
"""
|
|
|
|
def __init__(self, graph_struct):
|
|
self.graph_struct = graph_struct
|
|
self.graph = nx.DiGraph()
|
|
self._nodes_indexes = self.graph_struct.list_of_nodes_indexes()
|
|
self._nodes_labels = self.graph_struct.list_of_nodes_labels()
|
|
self.aggregated_info_about_nodes_parents = None
|
|
self._fancy_indexing = None
|
|
self._time_scalar_indexing_structure = None
|
|
self._transition_scalar_indexing_structure = None
|
|
self._time_filtering = None
|
|
self._transition_filtering = None
|
|
|
|
def init_graph(self):
|
|
self.add_nodes(self.graph_struct.list_of_nodes_labels())
|
|
self.add_edges(self.graph_struct.list_of_edges())
|
|
self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes()
|
|
self._fancy_indexing = self.build_fancy_indexing_structure(0)
|
|
self.build_scalar_indexing_structures()
|
|
#self.build_time_scalar_indexing_structure()
|
|
self.build_time_columns_filtering_structure()
|
|
#self.build_transition_scalar_indexing_structure()
|
|
self.build_transition_columns_filtering_structure()
|
|
|
|
def add_nodes(self, list_of_nodes):
|
|
#self.graph.add_nodes_from(list_of_nodes)
|
|
nodes_indxs = self.graph_struct.list_of_nodes_indexes()
|
|
nodes_vals = self.graph_struct.nodes_values()
|
|
pos = 0
|
|
for id, node_indx, node_val in zip(list_of_nodes, nodes_indxs, nodes_vals):
|
|
self.graph.add_node(id, indx=node_indx, val=node_val, pos_indx=pos)
|
|
pos += 1
|
|
#set_node_attr(self.graph, {id:node_indx}, 'indx')
|
|
|
|
def add_edges(self, list_of_edges):
|
|
self.graph.add_edges_from(list_of_edges)
|
|
|
|
def get_ordered_by_indx_set_of_parents(self, node):
|
|
parents = self.get_parents_by_id(node)
|
|
nodes = self.get_nodes()
|
|
sorted_parents = [x for _, x in sorted(zip(nodes, parents))]
|
|
#p_indxes= []
|
|
#p_values = []
|
|
get_node_indx = self.get_node_indx
|
|
p_indxes = [get_node_indx(node) for node in sorted_parents]
|
|
p_values = [self.get_states_number(node) for node in sorted_parents]
|
|
return (sorted_parents, p_indxes, p_values)
|
|
|
|
def get_ord_set_of_par_of_all_nodes(self):
|
|
#result = []
|
|
#for node in self._nodes_labels:
|
|
#result.append(self.get_ordered_by_indx_set_of_parents(node))
|
|
get_ordered_by_indx_set_of_parents = self.get_ordered_by_indx_set_of_parents
|
|
result = [get_ordered_by_indx_set_of_parents(node) for node in self._nodes_labels]
|
|
return result
|
|
|
|
"""def get_ordered_by_indx_parents_values(self, node):
|
|
parents_values = []
|
|
parents = self.get_ordered_by_indx_set_of_parents(node)
|
|
for n in parents:
|
|
parents_values.append(self.graph_struct.get_states_number(n))
|
|
return parents_values"""
|
|
|
|
def get_ordered_by_indx_parents_values_for_all_nodes(self):
|
|
"""result = []
|
|
for node in self._nodes_labels:
|
|
result.append(self.get_ordered_by_indx_parents_values(node))
|
|
return result"""
|
|
pars_values = [i[2] for i in self.aggregated_info_about_nodes_parents]
|
|
return pars_values
|
|
|
|
def get_states_number_of_all_nodes_sorted(self):
|
|
#states_number_list = []
|
|
#for node in self._nodes_labels:
|
|
#states_number_list.append(self.get_states_number(node))
|
|
get_states_number = self.get_states_number
|
|
states_number_list = [get_states_number(node) for node in self._nodes_labels]
|
|
return states_number_list
|
|
|
|
def build_fancy_indexing_structure(self, start_indx):
|
|
if start_indx > 0:
|
|
pass
|
|
else:
|
|
fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents]
|
|
return fancy_indx
|
|
|
|
|
|
def build_time_scalar_indexing_structure_for_a_node(self, node_id, parents_indxs):
|
|
T_vector = np.array([self.get_states_number(node_id)])
|
|
T_vector = np.append(T_vector, parents_indxs)
|
|
T_vector = T_vector.cumprod().astype(np.int)
|
|
# print(T_vector)
|
|
return T_vector
|
|
|
|
|
|
def build_transition_scalar_indexing_structure_for_a_node(self, node_id, parents_indxs):
|
|
#M_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1],
|
|
#self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)])
|
|
node_states_number = self.get_states_number(node_id)
|
|
#get_states_number_by_indx = self.graph_struct.get_states_number_by_indx
|
|
M_vector = np.array([node_states_number,
|
|
node_states_number])
|
|
#M_vector = np.append(M_vector, [get_states_number_by_indx(x) for x in parents_indxs])
|
|
M_vector = np.append(M_vector, parents_indxs)
|
|
M_vector = M_vector.cumprod().astype(np.int)
|
|
return M_vector
|
|
|
|
def build_time_columns_filtering_structure(self):
|
|
#parents_indexes_list = self._fancy_indexing
|
|
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
|
|
self._time_filtering.append(np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int))"""
|
|
nodes_indxs = self.graph_struct.list_of_nodes_indexes()
|
|
self._time_filtering = [np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int)
|
|
for node_indx, p_indxs in zip(nodes_indxs, self._fancy_indexing)]
|
|
|
|
def build_transition_columns_filtering_structure(self):
|
|
#parents_indexes_list = self._fancy_indexing
|
|
nodes_number = self.graph_struct.total_variables_number
|
|
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
|
|
self._transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int))"""
|
|
nodes_indxs = self.graph_struct.list_of_nodes_indexes()
|
|
self._transition_filtering = [np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)
|
|
for node_indx, p_indxs in zip(nodes_indxs,
|
|
self._fancy_indexing)]
|
|
|
|
def build_scalar_indexing_structures(self):
|
|
parents_values_for_all_nodes = self.get_ordered_by_indx_parents_values_for_all_nodes()
|
|
build_transition_scalar_indexing_structure_for_a_node = self.build_transition_scalar_indexing_structure_for_a_node
|
|
build_time_scalar_indexing_structure_for_a_node = self.build_time_scalar_indexing_structure_for_a_node
|
|
aggr = [(build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs),
|
|
build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs))
|
|
for node_indx, p_indxs in
|
|
zip(self._nodes_labels,
|
|
parents_values_for_all_nodes)]
|
|
self._transition_scalar_indexing_structure = [i[0] for i in aggr]
|
|
self._time_scalar_indexing_structure = [i[1] for i in aggr]
|
|
|
|
def get_nodes(self):
|
|
return list(self.graph.nodes)
|
|
|
|
def get_edges(self):
|
|
return list(self.graph.edges)
|
|
|
|
def get_nodes_sorted_by_indx(self):
|
|
return self.graph_struct.list_of_nodes_labels()
|
|
|
|
def get_parents_by_id(self, node_id):
|
|
return list(self.graph.predecessors(node_id))
|
|
|
|
def get_states_number(self, node_id):
|
|
#return self.graph_struct.get_states_number(node_id)
|
|
return self.graph.nodes[node_id]['val']
|
|
|
|
def get_states_number_by_indx(self, node_indx):
|
|
return self.graph_struct.get_states_number_by_indx(node_indx)
|
|
|
|
def get_node_by_index(self, node_indx):
|
|
return self.graph_struct.get_node_id(node_indx)
|
|
|
|
def get_node_indx(self, node_id):
|
|
return nx.get_node_attributes(self.graph, 'indx')[node_id]
|
|
#return self.graph_struct.get_node_indx(node_id)
|
|
|
|
def get_positional_node_indx(self, node_id):
|
|
return self.graph.nodes[node_id]['pos_indx']
|
|
|
|
@property
|
|
def time_scalar_indexing_strucure(self):
|
|
return self._time_scalar_indexing_structure
|
|
|
|
@property
|
|
def time_filtering(self):
|
|
return self._time_filtering
|
|
|
|
@property
|
|
def transition_scalar_indexing_structure(self):
|
|
return self._transition_scalar_indexing_structure
|
|
|
|
@property
|
|
def transition_filtering(self):
|
|
return self._transition_filtering
|
|
|
|
|
|
|