Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.5 KiB
55 lines
1.5 KiB
import sys
|
|
sys.path.append("../../classes/")
|
|
import glob
|
|
import math
|
|
import os
|
|
import unittest
|
|
|
|
import networkx as nx
|
|
import numpy as np
|
|
import psutil
|
|
from line_profiler import LineProfiler
|
|
import copy
|
|
|
|
import utility.cache as ch
|
|
import structure_graph.sample_path as sp
|
|
import estimators.structure_score_based_estimator as se
|
|
import utility.json_importer as ji
|
|
|
|
|
|
|
|
class TestTabuSearch(unittest.TestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
|
|
cls.importer = ji.JsonImporter("../../data/networks_and_trajectories_ternary_data_20.json",
|
|
'samples', 'dyn.str', 'variables', 'Time', 'Name', 2 )
|
|
cls.s1 = sp.SamplePath(cls.importer)
|
|
cls.s1.build_trajectories()
|
|
cls.s1.build_structure()
|
|
|
|
|
|
|
|
def test_structure(self):
|
|
true_edges = copy.deepcopy(self.s1.structure.edges)
|
|
true_edges = set(map(tuple, true_edges))
|
|
|
|
se1 = se.StructureScoreBasedEstimator(self.s1)
|
|
edges = se1.estimate_structure(
|
|
max_parents = None,
|
|
iterations_number = 100,
|
|
patience = None,
|
|
tabu_length = 15,
|
|
tabu_rules_duration = 15,
|
|
optimizer = 'tabu'
|
|
)
|
|
|
|
|
|
self.assertEqual(edges, true_edges)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|
|
|