1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/json_importer.py

165 lines
6.1 KiB

import os
import glob
import pandas as pd
import json
from abstract_importer import AbstractImporter
from line_profiler import LineProfiler
class JsonImporter(AbstractImporter):
"""
Implementa l'interfaccia AbstractImporter e aggiunge i metodi necessari a costruire le trajectories e la struttura della rete
del dataset in formato json con la seguente struttura:
[] 0
|_ dyn.cims
|_ dyn.str
|_ samples
|_ variabels
:df_samples_list: lista di dataframe, ogni dataframe contiene una traj
:df_structure: dataframe contenente la struttura della rete
:df_variables: dataframe contenente le infromazioni sulle variabili della rete
"""
def __init__(self, files_path, samples_label, structure_label, variables_label, time_key, variables_key):
self.samples_label = samples_label
self.structure_label = structure_label
self.variables_label = variables_label
self.time_key = time_key
self.variables_key = variables_key
self.df_samples_list = []
self._df_structure = pd.DataFrame()
self._df_variables = pd.DataFrame()
self._concatenated_samples = None
self.sorter = None
super(JsonImporter, self).__init__(files_path)
def import_data(self):
raw_data = self.read_json_file()
self.import_trajectories(raw_data)
self.compute_row_delta_in_all_samples_frames(self.time_key)
self.clear_data_frame_list()
self.import_structure(raw_data)
self.import_variables(raw_data, self.sorter)
def import_trajectories(self, raw_data):
self.normalize_trajectories(raw_data, 0, self.samples_label)
def import_structure(self, raw_data):
self._df_structure = self.one_level_normalizing(raw_data, 0, self.structure_label)
def import_variables(self, raw_data, sorter):
self._df_variables = self.one_level_normalizing(raw_data, 0, self.variables_label)
self._df_variables[self.variables_key] = self._df_variables[self.variables_key].astype("category")
self._df_variables[self.variables_key] = self._df_variables[self.variables_key].cat.set_categories(sorter)
self._df_variables = self._df_variables.sort_values([self.variables_key])
def read_json_file(self):
"""
Legge il primo file .json nel path self.filepath
Parameters:
void
Returns:
:data: il contenuto del file json
"""
try:
read_files = glob.glob(os.path.join(self.files_path, "*.json"))
if not read_files:
raise ValueError('No .json file found in the entered path!')
with open(read_files[0]) as f:
data = json.load(f)
return data
except ValueError as err:
print(err.args)
def one_level_normalizing(self, raw_data, indx, key):
"""
Estrae i dati innestati di un livello, presenti nel dataset raw_data,
presenti nel json array all'indice indx nel json object key
Parameters:
:raw_data: il dataset json completo
:indx: l'indice del json array da cui estrarre i dati
:key: il json object da cui estrarre i dati
Returns:
Il dataframe contenente i dati normalizzati
"""
return pd.DataFrame(raw_data[indx][key])
def normalize_trajectories(self, raw_data, indx, trajectories_key):
"""
Estrae le traiettorie presenti in rawdata nel json array all'indice indx, nel json object trajectories_key.
Aggiunge le traj estratte nella lista di dataframe self.df_samples_list
Parameters:
void
Returns:
void
"""
for sample_indx, sample in enumerate(raw_data[indx][trajectories_key]):
self.df_samples_list.append(pd.DataFrame(sample))
def compute_row_delta_sigle_samples_frame(self, sample_frame, time_header_label, columns_header, shifted_cols_header):
sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1)
shifted_cols = sample_frame[columns_header[1:]].shift(-1)
shifted_cols.columns = shifted_cols_header
sample_frame = sample_frame.assign(**shifted_cols)
sample_frame.drop(sample_frame.tail(1).index, inplace=True)
return sample_frame
def compute_row_delta_in_all_samples_frames(self, time_header_label):
columns_header = list(self.df_samples_list[0].columns.values)
self.sorter = columns_header[1:]
shifted_cols_header = [s + "S" for s in columns_header[1:]]
for indx, sample in enumerate(self.df_samples_list):
self.df_samples_list[indx] = self.compute_row_delta_sigle_samples_frame(sample,
time_header_label, columns_header, shifted_cols_header)
self._concatenated_samples = pd.concat(self.df_samples_list)
def build_list_of_samples_array(self, data_frame):
"""
Costruisce una lista contenente le colonne presenti nel dataframe data_frame convertendole in numpy_array
Parameters:
:data_frame: il dataframe da cui estrarre e convertire le colonne
Returns:
:columns_list: la lista contenente le colonne convertite in numpyarray
"""
columns_list = []
for column in data_frame:
columns_list.append(data_frame[column].to_numpy())
return columns_list
def clear_concatenated_frame(self):
"""
Rimuove tutti i valori contenuti nei data_frames presenti in df_samples_list
Parameters:
void
Returns:
void
"""
self._concatenated_samples = self._concatenated_samples.iloc[0:0]
def clear_data_frame_list(self):
for indx in range(len(self.df_samples_list)): # Le singole traj non servono più
self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0]
@property
def concatenated_samples(self):
return self._concatenated_samples
@property
def variables(self):
return self._df_variables
@property
def structure(self):
return self._df_structure