1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/share/doc/networkx-2.5/examples/advanced/plot_eigenvalues.py

22 lines
505 B

"""
===========
Eigenvalues
===========
Create an G{n,m} random graph and compute the eigenvalues.
"""
import matplotlib.pyplot as plt
import networkx as nx
import numpy.linalg
n = 1000 # 1000 nodes
m = 5000 # 5000 edges
G = nx.gnm_random_graph(n, m)
L = nx.normalized_laplacian_matrix(G)
e = numpy.linalg.eigvals(L.A)
print("Largest eigenvalue:", max(e))
print("Smallest eigenvalue:", min(e))
plt.hist(e, bins=100) # histogram with 100 bins
plt.xlim(0, 2) # eigenvalues between 0 and 2
plt.show()