Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.7 KiB
73 lines
2.7 KiB
import numpy as np
|
|
from numpy.testing import (assert_equal, assert_almost_equal,
|
|
assert_allclose)
|
|
from scipy.special import logit, expit
|
|
|
|
|
|
class TestLogit(object):
|
|
def check_logit_out(self, dtype, expected):
|
|
a = np.linspace(0,1,10)
|
|
a = np.array(a, dtype=dtype)
|
|
with np.errstate(divide='ignore'):
|
|
actual = logit(a)
|
|
|
|
assert_almost_equal(actual, expected)
|
|
|
|
assert_equal(actual.dtype, np.dtype(dtype))
|
|
|
|
def test_float32(self):
|
|
expected = np.array([-np.inf, -2.07944155,
|
|
-1.25276291, -0.69314718,
|
|
-0.22314353, 0.22314365,
|
|
0.6931473, 1.25276303,
|
|
2.07944155, np.inf], dtype=np.float32)
|
|
self.check_logit_out('f4', expected)
|
|
|
|
def test_float64(self):
|
|
expected = np.array([-np.inf, -2.07944154,
|
|
-1.25276297, -0.69314718,
|
|
-0.22314355, 0.22314355,
|
|
0.69314718, 1.25276297,
|
|
2.07944154, np.inf])
|
|
self.check_logit_out('f8', expected)
|
|
|
|
def test_nan(self):
|
|
expected = np.array([np.nan]*4)
|
|
with np.errstate(invalid='ignore'):
|
|
actual = logit(np.array([-3., -2., 2., 3.]))
|
|
|
|
assert_equal(expected, actual)
|
|
|
|
|
|
class TestExpit(object):
|
|
def check_expit_out(self, dtype, expected):
|
|
a = np.linspace(-4,4,10)
|
|
a = np.array(a, dtype=dtype)
|
|
actual = expit(a)
|
|
assert_almost_equal(actual, expected)
|
|
assert_equal(actual.dtype, np.dtype(dtype))
|
|
|
|
def test_float32(self):
|
|
expected = np.array([0.01798621, 0.04265125,
|
|
0.09777259, 0.20860852,
|
|
0.39068246, 0.60931754,
|
|
0.79139149, 0.9022274,
|
|
0.95734876, 0.98201376], dtype=np.float32)
|
|
self.check_expit_out('f4',expected)
|
|
|
|
def test_float64(self):
|
|
expected = np.array([0.01798621, 0.04265125,
|
|
0.0977726, 0.20860853,
|
|
0.39068246, 0.60931754,
|
|
0.79139147, 0.9022274,
|
|
0.95734875, 0.98201379])
|
|
self.check_expit_out('f8', expected)
|
|
|
|
def test_large(self):
|
|
for dtype in (np.float32, np.float64, np.longdouble):
|
|
for n in (88, 89, 709, 710, 11356, 11357):
|
|
n = np.array(n, dtype=dtype)
|
|
assert_allclose(expit(n), 1.0, atol=1e-20)
|
|
assert_allclose(expit(-n), 0.0, atol=1e-20)
|
|
assert_equal(expit(n).dtype, dtype)
|
|
assert_equal(expit(-n).dtype, dtype)
|
|
|