Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
1.9 KiB
59 lines
1.9 KiB
import numpy as np
|
|
from numpy.testing import assert_allclose, assert_equal
|
|
import pytest
|
|
|
|
import scipy.special as sc
|
|
|
|
class TestInverseErrorFunction:
|
|
def test_compliment(self):
|
|
# Test erfcinv(1 - x) == erfinv(x)
|
|
x = np.linspace(-1, 1, 101)
|
|
assert_allclose(sc.erfcinv(1 - x), sc.erfinv(x), rtol=0, atol=1e-15)
|
|
|
|
def test_literal_values(self):
|
|
# calculated via https://keisan.casio.com/exec/system/1180573448
|
|
# for y = 0, 0.1, ... , 0.9
|
|
actual = sc.erfinv(np.linspace(0, 0.9, 10))
|
|
expected = [
|
|
0,
|
|
0.08885599049425768701574,
|
|
0.1791434546212916764928,
|
|
0.27246271472675435562,
|
|
0.3708071585935579290583,
|
|
0.4769362762044698733814,
|
|
0.5951160814499948500193,
|
|
0.7328690779592168522188,
|
|
0.9061938024368232200712,
|
|
1.163087153676674086726,
|
|
]
|
|
assert_allclose(actual, expected, rtol=0, atol=1e-15)
|
|
|
|
@pytest.mark.parametrize(
|
|
'f, x, y',
|
|
[
|
|
(sc.erfinv, -1, -np.inf),
|
|
(sc.erfinv, 0, 0),
|
|
(sc.erfinv, 1, np.inf),
|
|
(sc.erfinv, -100, np.nan),
|
|
(sc.erfinv, 100, np.nan),
|
|
(sc.erfcinv, 0, np.inf),
|
|
(sc.erfcinv, 1, -0.0),
|
|
(sc.erfcinv, 2, -np.inf),
|
|
(sc.erfcinv, -100, np.nan),
|
|
(sc.erfcinv, 100, np.nan),
|
|
],
|
|
ids=[
|
|
'erfinv at lower bound',
|
|
'erfinv at midpoint',
|
|
'erfinv at upper bound',
|
|
'erfinv below lower bound',
|
|
'erfinv above upper bound',
|
|
'erfcinv at lower bound',
|
|
'erfcinv at midpoint',
|
|
'erfcinv at upper bound',
|
|
'erfcinv below lower bound',
|
|
'erfcinv above upper bound',
|
|
]
|
|
)
|
|
def test_domain_bounds(self, f, x, y):
|
|
assert_equal(f(x), y)
|
|
|