Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
2.6 KiB
106 lines
2.6 KiB
import numpy as np
|
|
from numpy.testing import assert_equal, assert_almost_equal, assert_allclose
|
|
from scipy.special import boxcox, boxcox1p, inv_boxcox, inv_boxcox1p
|
|
|
|
|
|
# There are more tests of boxcox and boxcox1p in test_mpmath.py.
|
|
|
|
def test_boxcox_basic():
|
|
x = np.array([0.5, 1, 2, 4])
|
|
|
|
# lambda = 0 => y = log(x)
|
|
y = boxcox(x, 0)
|
|
assert_almost_equal(y, np.log(x))
|
|
|
|
# lambda = 1 => y = x - 1
|
|
y = boxcox(x, 1)
|
|
assert_almost_equal(y, x - 1)
|
|
|
|
# lambda = 2 => y = 0.5*(x**2 - 1)
|
|
y = boxcox(x, 2)
|
|
assert_almost_equal(y, 0.5*(x**2 - 1))
|
|
|
|
# x = 0 and lambda > 0 => y = -1 / lambda
|
|
lam = np.array([0.5, 1, 2])
|
|
y = boxcox(0, lam)
|
|
assert_almost_equal(y, -1.0 / lam)
|
|
|
|
def test_boxcox_underflow():
|
|
x = 1 + 1e-15
|
|
lmbda = 1e-306
|
|
y = boxcox(x, lmbda)
|
|
assert_allclose(y, np.log(x), rtol=1e-14)
|
|
|
|
|
|
def test_boxcox_nonfinite():
|
|
# x < 0 => y = nan
|
|
x = np.array([-1, -1, -0.5])
|
|
y = boxcox(x, [0.5, 2.0, -1.5])
|
|
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
|
|
|
# x = 0 and lambda <= 0 => y = -inf
|
|
x = 0
|
|
y = boxcox(x, [-2.5, 0])
|
|
assert_equal(y, np.array([-np.inf, -np.inf]))
|
|
|
|
|
|
def test_boxcox1p_basic():
|
|
x = np.array([-0.25, -1e-20, 0, 1e-20, 0.25, 1, 3])
|
|
|
|
# lambda = 0 => y = log(1+x)
|
|
y = boxcox1p(x, 0)
|
|
assert_almost_equal(y, np.log1p(x))
|
|
|
|
# lambda = 1 => y = x
|
|
y = boxcox1p(x, 1)
|
|
assert_almost_equal(y, x)
|
|
|
|
# lambda = 2 => y = 0.5*((1+x)**2 - 1) = 0.5*x*(2 + x)
|
|
y = boxcox1p(x, 2)
|
|
assert_almost_equal(y, 0.5*x*(2 + x))
|
|
|
|
# x = -1 and lambda > 0 => y = -1 / lambda
|
|
lam = np.array([0.5, 1, 2])
|
|
y = boxcox1p(-1, lam)
|
|
assert_almost_equal(y, -1.0 / lam)
|
|
|
|
|
|
def test_boxcox1p_underflow():
|
|
x = np.array([1e-15, 1e-306])
|
|
lmbda = np.array([1e-306, 1e-18])
|
|
y = boxcox1p(x, lmbda)
|
|
assert_allclose(y, np.log1p(x), rtol=1e-14)
|
|
|
|
|
|
def test_boxcox1p_nonfinite():
|
|
# x < -1 => y = nan
|
|
x = np.array([-2, -2, -1.5])
|
|
y = boxcox1p(x, [0.5, 2.0, -1.5])
|
|
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
|
|
|
# x = -1 and lambda <= 0 => y = -inf
|
|
x = -1
|
|
y = boxcox1p(x, [-2.5, 0])
|
|
assert_equal(y, np.array([-np.inf, -np.inf]))
|
|
|
|
|
|
def test_inv_boxcox():
|
|
x = np.array([0., 1., 2.])
|
|
lam = np.array([0., 1., 2.])
|
|
y = boxcox(x, lam)
|
|
x2 = inv_boxcox(y, lam)
|
|
assert_almost_equal(x, x2)
|
|
|
|
x = np.array([0., 1., 2.])
|
|
lam = np.array([0., 1., 2.])
|
|
y = boxcox1p(x, lam)
|
|
x2 = inv_boxcox1p(y, lam)
|
|
assert_almost_equal(x, x2)
|
|
|
|
|
|
def test_inv_boxcox1p_underflow():
|
|
x = 1e-15
|
|
lam = 1e-306
|
|
y = inv_boxcox1p(x, lam)
|
|
assert_allclose(y, x, rtol=1e-14)
|
|
|
|
|