Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.5 KiB
227 lines
7.5 KiB
from __future__ import division, print_function, absolute_import
|
|
|
|
__all__ = ['geometric_slerp']
|
|
|
|
import warnings
|
|
|
|
import numpy as np
|
|
from scipy.spatial.distance import euclidean
|
|
|
|
|
|
def _geometric_slerp(start, end, t):
|
|
# create an orthogonal basis using QR decomposition
|
|
basis = np.vstack([start, end])
|
|
Q, R = np.linalg.qr(basis.T)
|
|
signs = 2 * (np.diag(R) >= 0) - 1
|
|
Q = Q.T * signs.T[:, np.newaxis]
|
|
R = R.T * signs.T[:, np.newaxis]
|
|
|
|
# calculate the angle between `start` and `end`
|
|
c = np.dot(start, end)
|
|
s = np.linalg.det(R)
|
|
omega = np.arctan2(s, c)
|
|
|
|
# interpolate
|
|
start, end = Q
|
|
s = np.sin(t * omega)
|
|
c = np.cos(t * omega)
|
|
return start * c[:, np.newaxis] + end * s[:, np.newaxis]
|
|
|
|
|
|
def geometric_slerp(start,
|
|
end,
|
|
t,
|
|
tol=1e-7):
|
|
"""
|
|
Geometric spherical linear interpolation.
|
|
|
|
The interpolation occurs along a unit-radius
|
|
great circle arc in arbitrary dimensional space.
|
|
|
|
Parameters
|
|
----------
|
|
start : (n_dimensions, ) array-like
|
|
Single n-dimensional input coordinate in a 1-D array-like
|
|
object. `n` must be greater than 1.
|
|
end : (n_dimensions, ) array-like
|
|
Single n-dimensional input coordinate in a 1-D array-like
|
|
object. `n` must be greater than 1.
|
|
t: float or (n_points,) array-like
|
|
A float or array-like of doubles representing interpolation
|
|
parameters, with values required in the inclusive interval
|
|
between 0 and 1. A common approach is to generate the array
|
|
with ``np.linspace(0, 1, n_pts)`` for linearly spaced points.
|
|
Ascending, descending, and scrambled orders are permitted.
|
|
tol: float
|
|
The absolute tolerance for determining if the start and end
|
|
coordinates are antipodes.
|
|
|
|
Returns
|
|
-------
|
|
result : (t.size, D)
|
|
An array of doubles containing the interpolated
|
|
spherical path and including start and
|
|
end when 0 and 1 t are used. The
|
|
interpolated values should correspond to the
|
|
same sort order provided in the t array. The result
|
|
may be 1-dimensional if ``t`` is a float.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If ``start`` and ``end`` are antipodes, not on the
|
|
unit n-sphere, or for a variety of degenerate conditions.
|
|
|
|
Notes
|
|
-----
|
|
The implementation is based on the mathematical formula provided in [1]_,
|
|
and the first known presentation of this algorithm, derived from study of
|
|
4-D geometry, is credited to Glenn Davis in a footnote of the original
|
|
quaternion Slerp publication by Ken Shoemake [2]_.
|
|
|
|
.. versionadded:: 1.5.0
|
|
|
|
References
|
|
----------
|
|
.. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp
|
|
.. [2] Ken Shoemake (1985) Animating rotation with quaternion curves.
|
|
ACM SIGGRAPH Computer Graphics, 19(3): 245-254.
|
|
|
|
See Also
|
|
--------
|
|
scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions
|
|
|
|
Examples
|
|
--------
|
|
Interpolate four linearly-spaced values on the circumference of
|
|
a circle spanning 90 degrees:
|
|
|
|
>>> from scipy.spatial import geometric_slerp
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> fig = plt.figure()
|
|
>>> ax = fig.add_subplot(111)
|
|
>>> start = np.array([1, 0])
|
|
>>> end = np.array([0, 1])
|
|
>>> t_vals = np.linspace(0, 1, 4)
|
|
>>> result = geometric_slerp(start,
|
|
... end,
|
|
... t_vals)
|
|
|
|
The interpolated results should be at 30 degree intervals
|
|
recognizable on the unit circle:
|
|
|
|
>>> ax.scatter(result[...,0], result[...,1], c='k')
|
|
>>> circle = plt.Circle((0, 0), 1, color='grey')
|
|
>>> ax.add_artist(circle)
|
|
>>> ax.set_aspect('equal')
|
|
>>> plt.show()
|
|
|
|
Attempting to interpolate between antipodes on a circle is
|
|
ambiguous because there are two possible paths, and on a
|
|
sphere there are infinite possible paths on the geodesic surface.
|
|
Nonetheless, one of the ambiguous paths is returned along
|
|
with a warning:
|
|
|
|
>>> opposite_pole = np.array([-1, 0])
|
|
>>> with np.testing.suppress_warnings() as sup:
|
|
... sup.filter(UserWarning)
|
|
... geometric_slerp(start,
|
|
... opposite_pole,
|
|
... t_vals)
|
|
array([[ 1.00000000e+00, 0.00000000e+00],
|
|
[ 5.00000000e-01, 8.66025404e-01],
|
|
[-5.00000000e-01, 8.66025404e-01],
|
|
[-1.00000000e+00, 1.22464680e-16]])
|
|
|
|
Extend the original example to a sphere and plot interpolation
|
|
points in 3D:
|
|
|
|
>>> from mpl_toolkits.mplot3d import proj3d
|
|
>>> fig = plt.figure()
|
|
>>> ax = fig.add_subplot(111, projection='3d')
|
|
|
|
Plot the unit sphere for reference (optional):
|
|
|
|
>>> u = np.linspace(0, 2 * np.pi, 100)
|
|
>>> v = np.linspace(0, np.pi, 100)
|
|
>>> x = np.outer(np.cos(u), np.sin(v))
|
|
>>> y = np.outer(np.sin(u), np.sin(v))
|
|
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
|
|
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
|
|
|
|
Interpolating over a larger number of points
|
|
may provide the appearance of a smooth curve on
|
|
the surface of the sphere, which is also useful
|
|
for discretized integration calculations on a
|
|
sphere surface:
|
|
|
|
>>> start = np.array([1, 0, 0])
|
|
>>> end = np.array([0, 0, 1])
|
|
>>> t_vals = np.linspace(0, 1, 200)
|
|
>>> result = geometric_slerp(start,
|
|
... end,
|
|
... t_vals)
|
|
>>> ax.plot(result[...,0],
|
|
... result[...,1],
|
|
... result[...,2],
|
|
... c='k')
|
|
>>> plt.show()
|
|
"""
|
|
|
|
start = np.asarray(start, dtype=np.float64)
|
|
end = np.asarray(end, dtype=np.float64)
|
|
|
|
if start.ndim != 1 or end.ndim != 1:
|
|
raise ValueError("Start and end coordinates "
|
|
"must be one-dimensional")
|
|
|
|
if start.size != end.size:
|
|
raise ValueError("The dimensions of start and "
|
|
"end must match (have same size)")
|
|
|
|
if start.size < 2 or end.size < 2:
|
|
raise ValueError("The start and end coordinates must "
|
|
"both be in at least two-dimensional "
|
|
"space")
|
|
|
|
if np.array_equal(start, end):
|
|
return [start] * np.asarray(t).size
|
|
|
|
# for points that violate equation for n-sphere
|
|
for coord in [start, end]:
|
|
if not np.allclose(np.linalg.norm(coord), 1.0,
|
|
rtol=1e-9,
|
|
atol=0):
|
|
raise ValueError("start and end are not"
|
|
" on a unit n-sphere")
|
|
|
|
if not isinstance(tol, float):
|
|
raise ValueError("tol must be a float")
|
|
else:
|
|
tol = np.fabs(tol)
|
|
|
|
coord_dist = euclidean(start, end)
|
|
|
|
# diameter of 2 within tolerance means antipodes, which is a problem
|
|
# for all unit n-spheres (even the 0-sphere would have an ambiguous path)
|
|
if np.allclose(coord_dist, 2.0, rtol=0, atol=tol):
|
|
warnings.warn("start and end are antipodes"
|
|
" using the specified tolerance;"
|
|
" this may cause ambiguous slerp paths")
|
|
|
|
t = np.asarray(t, dtype=np.float64)
|
|
|
|
if t.size == 0:
|
|
return np.empty((0, start.size))
|
|
|
|
if t.min() < 0 or t.max() > 1:
|
|
raise ValueError("interpolation parameter must be in [0, 1]")
|
|
|
|
if t.ndim == 0:
|
|
return _geometric_slerp(start,
|
|
end,
|
|
np.atleast_1d(t)).ravel()
|
|
else:
|
|
return _geometric_slerp(start,
|
|
end,
|
|
t)
|
|
|