1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/sparse/data.py

397 lines
12 KiB

"""Base class for sparse matrice with a .data attribute
subclasses must provide a _with_data() method that
creates a new matrix with the same sparsity pattern
as self but with a different data array
"""
import numpy as np
from .base import spmatrix, _ufuncs_with_fixed_point_at_zero
from .sputils import isscalarlike, validateaxis, matrix
__all__ = []
# TODO implement all relevant operations
# use .data.__methods__() instead of /=, *=, etc.
class _data_matrix(spmatrix):
def __init__(self):
spmatrix.__init__(self)
def _get_dtype(self):
return self.data.dtype
def _set_dtype(self, newtype):
self.data.dtype = newtype
dtype = property(fget=_get_dtype, fset=_set_dtype)
def _deduped_data(self):
if hasattr(self, 'sum_duplicates'):
self.sum_duplicates()
return self.data
def __abs__(self):
return self._with_data(abs(self._deduped_data()))
def __round__(self, ndigits=0):
return self._with_data(np.around(self._deduped_data(), decimals=ndigits))
def _real(self):
return self._with_data(self.data.real)
def _imag(self):
return self._with_data(self.data.imag)
def __neg__(self):
if self.dtype.kind == 'b':
raise NotImplementedError('negating a sparse boolean '
'matrix is not supported')
return self._with_data(-self.data)
def __imul__(self, other): # self *= other
if isscalarlike(other):
self.data *= other
return self
else:
return NotImplemented
def __itruediv__(self, other): # self /= other
if isscalarlike(other):
recip = 1.0 / other
self.data *= recip
return self
else:
return NotImplemented
def astype(self, dtype, casting='unsafe', copy=True):
dtype = np.dtype(dtype)
if self.dtype != dtype:
return self._with_data(
self._deduped_data().astype(dtype, casting=casting, copy=copy),
copy=copy)
elif copy:
return self.copy()
else:
return self
astype.__doc__ = spmatrix.astype.__doc__
def conj(self, copy=True):
if np.issubdtype(self.dtype, np.complexfloating):
return self._with_data(self.data.conj(), copy=copy)
elif copy:
return self.copy()
else:
return self
conj.__doc__ = spmatrix.conj.__doc__
def copy(self):
return self._with_data(self.data.copy(), copy=True)
copy.__doc__ = spmatrix.copy.__doc__
def count_nonzero(self):
return np.count_nonzero(self._deduped_data())
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def power(self, n, dtype=None):
"""
This function performs element-wise power.
Parameters
----------
n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.
"""
if not isscalarlike(n):
raise NotImplementedError("input is not scalar")
data = self._deduped_data()
if dtype is not None:
data = data.astype(dtype)
return self._with_data(data ** n)
###########################
# Multiplication handlers #
###########################
def _mul_scalar(self, other):
return self._with_data(self.data * other)
# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix.
for npfunc in _ufuncs_with_fixed_point_at_zero:
name = npfunc.__name__
def _create_method(op):
def method(self):
result = op(self._deduped_data())
return self._with_data(result, copy=True)
method.__doc__ = ("Element-wise %s.\n\n"
"See `numpy.%s` for more information." % (name, name))
method.__name__ = name
return method
setattr(_data_matrix, name, _create_method(npfunc))
def _find_missing_index(ind, n):
for k, a in enumerate(ind):
if k != a:
return k
k += 1
if k < n:
return k
else:
return -1
class _minmax_mixin(object):
"""Mixin for min and max methods.
These are not implemented for dia_matrix, hence the separate class.
"""
def _min_or_max_axis(self, axis, min_or_max):
N = self.shape[axis]
if N == 0:
raise ValueError("zero-size array to reduction operation")
M = self.shape[1 - axis]
mat = self.tocsc() if axis == 0 else self.tocsr()
mat.sum_duplicates()
major_index, value = mat._minor_reduce(min_or_max)
not_full = np.diff(mat.indptr)[major_index] < N
value[not_full] = min_or_max(value[not_full], 0)
mask = value != 0
major_index = np.compress(mask, major_index)
value = np.compress(mask, value)
from . import coo_matrix
if axis == 0:
return coo_matrix((value, (np.zeros(len(value)), major_index)),
dtype=self.dtype, shape=(1, M))
else:
return coo_matrix((value, (major_index, np.zeros(len(value)))),
dtype=self.dtype, shape=(M, 1))
def _min_or_max(self, axis, out, min_or_max):
if out is not None:
raise ValueError(("Sparse matrices do not support "
"an 'out' parameter."))
validateaxis(axis)
if axis is None:
if 0 in self.shape:
raise ValueError("zero-size array to reduction operation")
zero = self.dtype.type(0)
if self.nnz == 0:
return zero
m = min_or_max.reduce(self._deduped_data().ravel())
if self.nnz != np.prod(self.shape):
m = min_or_max(zero, m)
return m
if axis < 0:
axis += 2
if (axis == 0) or (axis == 1):
return self._min_or_max_axis(axis, min_or_max)
else:
raise ValueError("axis out of range")
def _arg_min_or_max_axis(self, axis, op, compare):
if self.shape[axis] == 0:
raise ValueError("Can't apply the operation along a zero-sized "
"dimension.")
if axis < 0:
axis += 2
zero = self.dtype.type(0)
mat = self.tocsc() if axis == 0 else self.tocsr()
mat.sum_duplicates()
ret_size, line_size = mat._swap(mat.shape)
ret = np.zeros(ret_size, dtype=int)
nz_lines, = np.nonzero(np.diff(mat.indptr))
for i in nz_lines:
p, q = mat.indptr[i:i + 2]
data = mat.data[p:q]
indices = mat.indices[p:q]
am = op(data)
m = data[am]
if compare(m, zero) or q - p == line_size:
ret[i] = indices[am]
else:
zero_ind = _find_missing_index(indices, line_size)
if m == zero:
ret[i] = min(am, zero_ind)
else:
ret[i] = zero_ind
if axis == 1:
ret = ret.reshape(-1, 1)
return matrix(ret)
def _arg_min_or_max(self, axis, out, op, compare):
if out is not None:
raise ValueError("Sparse matrices do not support "
"an 'out' parameter.")
validateaxis(axis)
if axis is None:
if 0 in self.shape:
raise ValueError("Can't apply the operation to "
"an empty matrix.")
if self.nnz == 0:
return 0
else:
zero = self.dtype.type(0)
mat = self.tocoo()
mat.sum_duplicates()
am = op(mat.data)
m = mat.data[am]
if compare(m, zero):
return mat.row[am] * mat.shape[1] + mat.col[am]
else:
size = np.prod(mat.shape)
if size == mat.nnz:
return am
else:
ind = mat.row * mat.shape[1] + mat.col
zero_ind = _find_missing_index(ind, size)
if m == zero:
return min(zero_ind, am)
else:
return zero_ind
return self._arg_min_or_max_axis(axis, op, compare)
def max(self, axis=None, out=None):
"""
Return the maximum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the sum is computed. The default is to
compute the maximum over all the matrix elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except
for the default value, as this argument is not used.
Returns
-------
amax : coo_matrix or scalar
Maximum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
min : The minimum value of a sparse matrix along a given axis.
numpy.matrix.max : NumPy's implementation of 'max' for matrices
"""
return self._min_or_max(axis, out, np.maximum)
def min(self, axis=None, out=None):
"""
Return the minimum of the matrix or maximum along an axis.
This takes all elements into account, not just the non-zero ones.
Parameters
----------
axis : {-2, -1, 0, 1, None} optional
Axis along which the sum is computed. The default is to
compute the minimum over all the matrix elements, returning
a scalar (i.e., `axis` = `None`).
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
amin : coo_matrix or scalar
Minimum of `a`. If `axis` is None, the result is a scalar value.
If `axis` is given, the result is a sparse.coo_matrix of dimension
``a.ndim - 1``.
See Also
--------
max : The maximum value of a sparse matrix along a given axis.
numpy.matrix.min : NumPy's implementation of 'min' for matrices
"""
return self._min_or_max(axis, out, np.minimum)
def argmax(self, axis=None, out=None):
"""Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : numpy.matrix or int
Indices of maximum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmax, np.greater)
def argmin(self, axis=None, out=None):
"""Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : numpy.matrix or int
Indices of minimum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmin, np.less)