Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1218 lines
40 KiB
1218 lines
40 KiB
"""Base class for sparse matrices"""
|
|
import numpy as np
|
|
|
|
from .sputils import (isdense, isscalarlike, isintlike,
|
|
get_sum_dtype, validateaxis, check_reshape_kwargs,
|
|
check_shape, asmatrix)
|
|
|
|
__all__ = ['spmatrix', 'isspmatrix', 'issparse',
|
|
'SparseWarning', 'SparseEfficiencyWarning']
|
|
|
|
|
|
class SparseWarning(Warning):
|
|
pass
|
|
|
|
|
|
class SparseFormatWarning(SparseWarning):
|
|
pass
|
|
|
|
|
|
class SparseEfficiencyWarning(SparseWarning):
|
|
pass
|
|
|
|
|
|
# The formats that we might potentially understand.
|
|
_formats = {'csc': [0, "Compressed Sparse Column"],
|
|
'csr': [1, "Compressed Sparse Row"],
|
|
'dok': [2, "Dictionary Of Keys"],
|
|
'lil': [3, "List of Lists"],
|
|
'dod': [4, "Dictionary of Dictionaries"],
|
|
'sss': [5, "Symmetric Sparse Skyline"],
|
|
'coo': [6, "COOrdinate"],
|
|
'lba': [7, "Linpack BAnded"],
|
|
'egd': [8, "Ellpack-itpack Generalized Diagonal"],
|
|
'dia': [9, "DIAgonal"],
|
|
'bsr': [10, "Block Sparse Row"],
|
|
'msr': [11, "Modified compressed Sparse Row"],
|
|
'bsc': [12, "Block Sparse Column"],
|
|
'msc': [13, "Modified compressed Sparse Column"],
|
|
'ssk': [14, "Symmetric SKyline"],
|
|
'nsk': [15, "Nonsymmetric SKyline"],
|
|
'jad': [16, "JAgged Diagonal"],
|
|
'uss': [17, "Unsymmetric Sparse Skyline"],
|
|
'vbr': [18, "Variable Block Row"],
|
|
'und': [19, "Undefined"]
|
|
}
|
|
|
|
|
|
# These univariate ufuncs preserve zeros.
|
|
_ufuncs_with_fixed_point_at_zero = frozenset([
|
|
np.sin, np.tan, np.arcsin, np.arctan, np.sinh, np.tanh, np.arcsinh,
|
|
np.arctanh, np.rint, np.sign, np.expm1, np.log1p, np.deg2rad,
|
|
np.rad2deg, np.floor, np.ceil, np.trunc, np.sqrt])
|
|
|
|
|
|
MAXPRINT = 50
|
|
|
|
|
|
class spmatrix(object):
|
|
""" This class provides a base class for all sparse matrices. It
|
|
cannot be instantiated. Most of the work is provided by subclasses.
|
|
"""
|
|
|
|
__array_priority__ = 10.1
|
|
ndim = 2
|
|
|
|
def __init__(self, maxprint=MAXPRINT):
|
|
self._shape = None
|
|
if self.__class__.__name__ == 'spmatrix':
|
|
raise ValueError("This class is not intended"
|
|
" to be instantiated directly.")
|
|
self.maxprint = maxprint
|
|
|
|
def set_shape(self, shape):
|
|
"""See `reshape`."""
|
|
# Make sure copy is False since this is in place
|
|
# Make sure format is unchanged because we are doing a __dict__ swap
|
|
new_matrix = self.reshape(shape, copy=False).asformat(self.format)
|
|
self.__dict__ = new_matrix.__dict__
|
|
|
|
def get_shape(self):
|
|
"""Get shape of a matrix."""
|
|
return self._shape
|
|
|
|
shape = property(fget=get_shape, fset=set_shape)
|
|
|
|
def reshape(self, *args, **kwargs):
|
|
"""reshape(self, shape, order='C', copy=False)
|
|
|
|
Gives a new shape to a sparse matrix without changing its data.
|
|
|
|
Parameters
|
|
----------
|
|
shape : length-2 tuple of ints
|
|
The new shape should be compatible with the original shape.
|
|
order : {'C', 'F'}, optional
|
|
Read the elements using this index order. 'C' means to read and
|
|
write the elements using C-like index order; e.g., read entire first
|
|
row, then second row, etc. 'F' means to read and write the elements
|
|
using Fortran-like index order; e.g., read entire first column, then
|
|
second column, etc.
|
|
copy : bool, optional
|
|
Indicates whether or not attributes of self should be copied
|
|
whenever possible. The degree to which attributes are copied varies
|
|
depending on the type of sparse matrix being used.
|
|
|
|
Returns
|
|
-------
|
|
reshaped_matrix : sparse matrix
|
|
A sparse matrix with the given `shape`, not necessarily of the same
|
|
format as the current object.
|
|
|
|
See Also
|
|
--------
|
|
numpy.matrix.reshape : NumPy's implementation of 'reshape' for
|
|
matrices
|
|
"""
|
|
# If the shape already matches, don't bother doing an actual reshape
|
|
# Otherwise, the default is to convert to COO and use its reshape
|
|
shape = check_shape(args, self.shape)
|
|
order, copy = check_reshape_kwargs(kwargs)
|
|
if shape == self.shape:
|
|
if copy:
|
|
return self.copy()
|
|
else:
|
|
return self
|
|
|
|
return self.tocoo(copy=copy).reshape(shape, order=order, copy=False)
|
|
|
|
def resize(self, shape):
|
|
"""Resize the matrix in-place to dimensions given by ``shape``
|
|
|
|
Any elements that lie within the new shape will remain at the same
|
|
indices, while non-zero elements lying outside the new shape are
|
|
removed.
|
|
|
|
Parameters
|
|
----------
|
|
shape : (int, int)
|
|
number of rows and columns in the new matrix
|
|
|
|
Notes
|
|
-----
|
|
The semantics are not identical to `numpy.ndarray.resize` or
|
|
`numpy.resize`. Here, the same data will be maintained at each index
|
|
before and after reshape, if that index is within the new bounds. In
|
|
numpy, resizing maintains contiguity of the array, moving elements
|
|
around in the logical matrix but not within a flattened representation.
|
|
|
|
We give no guarantees about whether the underlying data attributes
|
|
(arrays, etc.) will be modified in place or replaced with new objects.
|
|
"""
|
|
# As an inplace operation, this requires implementation in each format.
|
|
raise NotImplementedError(
|
|
'{}.resize is not implemented'.format(type(self).__name__))
|
|
|
|
def astype(self, dtype, casting='unsafe', copy=True):
|
|
"""Cast the matrix elements to a specified type.
|
|
|
|
Parameters
|
|
----------
|
|
dtype : string or numpy dtype
|
|
Typecode or data-type to which to cast the data.
|
|
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
|
Controls what kind of data casting may occur.
|
|
Defaults to 'unsafe' for backwards compatibility.
|
|
'no' means the data types should not be cast at all.
|
|
'equiv' means only byte-order changes are allowed.
|
|
'safe' means only casts which can preserve values are allowed.
|
|
'same_kind' means only safe casts or casts within a kind,
|
|
like float64 to float32, are allowed.
|
|
'unsafe' means any data conversions may be done.
|
|
copy : bool, optional
|
|
If `copy` is `False`, the result might share some memory with this
|
|
matrix. If `copy` is `True`, it is guaranteed that the result and
|
|
this matrix do not share any memory.
|
|
"""
|
|
|
|
dtype = np.dtype(dtype)
|
|
if self.dtype != dtype:
|
|
return self.tocsr().astype(
|
|
dtype, casting=casting, copy=copy).asformat(self.format)
|
|
elif copy:
|
|
return self.copy()
|
|
else:
|
|
return self
|
|
|
|
def asfptype(self):
|
|
"""Upcast matrix to a floating point format (if necessary)"""
|
|
|
|
fp_types = ['f', 'd', 'F', 'D']
|
|
|
|
if self.dtype.char in fp_types:
|
|
return self
|
|
else:
|
|
for fp_type in fp_types:
|
|
if self.dtype <= np.dtype(fp_type):
|
|
return self.astype(fp_type)
|
|
|
|
raise TypeError('cannot upcast [%s] to a floating '
|
|
'point format' % self.dtype.name)
|
|
|
|
def __iter__(self):
|
|
for r in range(self.shape[0]):
|
|
yield self[r, :]
|
|
|
|
def getmaxprint(self):
|
|
"""Maximum number of elements to display when printed."""
|
|
return self.maxprint
|
|
|
|
def count_nonzero(self):
|
|
"""Number of non-zero entries, equivalent to
|
|
|
|
np.count_nonzero(a.toarray())
|
|
|
|
Unlike getnnz() and the nnz property, which return the number of stored
|
|
entries (the length of the data attribute), this method counts the
|
|
actual number of non-zero entries in data.
|
|
"""
|
|
raise NotImplementedError("count_nonzero not implemented for %s." %
|
|
self.__class__.__name__)
|
|
|
|
def getnnz(self, axis=None):
|
|
"""Number of stored values, including explicit zeros.
|
|
|
|
Parameters
|
|
----------
|
|
axis : None, 0, or 1
|
|
Select between the number of values across the whole matrix, in
|
|
each column, or in each row.
|
|
|
|
See also
|
|
--------
|
|
count_nonzero : Number of non-zero entries
|
|
"""
|
|
raise NotImplementedError("getnnz not implemented for %s." %
|
|
self.__class__.__name__)
|
|
|
|
@property
|
|
def nnz(self):
|
|
"""Number of stored values, including explicit zeros.
|
|
|
|
See also
|
|
--------
|
|
count_nonzero : Number of non-zero entries
|
|
"""
|
|
return self.getnnz()
|
|
|
|
def getformat(self):
|
|
"""Format of a matrix representation as a string."""
|
|
return getattr(self, 'format', 'und')
|
|
|
|
def __repr__(self):
|
|
_, format_name = _formats[self.getformat()]
|
|
return "<%dx%d sparse matrix of type '%s'\n" \
|
|
"\twith %d stored elements in %s format>" % \
|
|
(self.shape + (self.dtype.type, self.nnz, format_name))
|
|
|
|
def __str__(self):
|
|
maxprint = self.getmaxprint()
|
|
|
|
A = self.tocoo()
|
|
|
|
# helper function, outputs "(i,j) v"
|
|
def tostr(row, col, data):
|
|
triples = zip(list(zip(row, col)), data)
|
|
return '\n'.join([(' %s\t%s' % t) for t in triples])
|
|
|
|
if self.nnz > maxprint:
|
|
half = maxprint // 2
|
|
out = tostr(A.row[:half], A.col[:half], A.data[:half])
|
|
out += "\n :\t:\n"
|
|
half = maxprint - maxprint//2
|
|
out += tostr(A.row[-half:], A.col[-half:], A.data[-half:])
|
|
else:
|
|
out = tostr(A.row, A.col, A.data)
|
|
|
|
return out
|
|
|
|
def __bool__(self): # Simple -- other ideas?
|
|
if self.shape == (1, 1):
|
|
return self.nnz != 0
|
|
else:
|
|
raise ValueError("The truth value of an array with more than one "
|
|
"element is ambiguous. Use a.any() or a.all().")
|
|
__nonzero__ = __bool__
|
|
|
|
# What should len(sparse) return? For consistency with dense matrices,
|
|
# perhaps it should be the number of rows? But for some uses the number of
|
|
# non-zeros is more important. For now, raise an exception!
|
|
def __len__(self):
|
|
raise TypeError("sparse matrix length is ambiguous; use getnnz()"
|
|
" or shape[0]")
|
|
|
|
def asformat(self, format, copy=False):
|
|
"""Return this matrix in the passed format.
|
|
|
|
Parameters
|
|
----------
|
|
format : {str, None}
|
|
The desired matrix format ("csr", "csc", "lil", "dok", "array", ...)
|
|
or None for no conversion.
|
|
copy : bool, optional
|
|
If True, the result is guaranteed to not share data with self.
|
|
|
|
Returns
|
|
-------
|
|
A : This matrix in the passed format.
|
|
"""
|
|
if format is None or format == self.format:
|
|
if copy:
|
|
return self.copy()
|
|
else:
|
|
return self
|
|
else:
|
|
try:
|
|
convert_method = getattr(self, 'to' + format)
|
|
except AttributeError:
|
|
raise ValueError('Format {} is unknown.'.format(format))
|
|
|
|
# Forward the copy kwarg, if it's accepted.
|
|
try:
|
|
return convert_method(copy=copy)
|
|
except TypeError:
|
|
return convert_method()
|
|
|
|
###################################################################
|
|
# NOTE: All arithmetic operations use csr_matrix by default.
|
|
# Therefore a new sparse matrix format just needs to define a
|
|
# .tocsr() method to provide arithmetic support. Any of these
|
|
# methods can be overridden for efficiency.
|
|
####################################################################
|
|
|
|
def multiply(self, other):
|
|
"""Point-wise multiplication by another matrix
|
|
"""
|
|
return self.tocsr().multiply(other)
|
|
|
|
def maximum(self, other):
|
|
"""Element-wise maximum between this and another matrix."""
|
|
return self.tocsr().maximum(other)
|
|
|
|
def minimum(self, other):
|
|
"""Element-wise minimum between this and another matrix."""
|
|
return self.tocsr().minimum(other)
|
|
|
|
def dot(self, other):
|
|
"""Ordinary dot product
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.sparse import csr_matrix
|
|
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
|
|
>>> v = np.array([1, 0, -1])
|
|
>>> A.dot(v)
|
|
array([ 1, -3, -1], dtype=int64)
|
|
|
|
"""
|
|
return self * other
|
|
|
|
def power(self, n, dtype=None):
|
|
"""Element-wise power."""
|
|
return self.tocsr().power(n, dtype=dtype)
|
|
|
|
def __eq__(self, other):
|
|
return self.tocsr().__eq__(other)
|
|
|
|
def __ne__(self, other):
|
|
return self.tocsr().__ne__(other)
|
|
|
|
def __lt__(self, other):
|
|
return self.tocsr().__lt__(other)
|
|
|
|
def __gt__(self, other):
|
|
return self.tocsr().__gt__(other)
|
|
|
|
def __le__(self, other):
|
|
return self.tocsr().__le__(other)
|
|
|
|
def __ge__(self, other):
|
|
return self.tocsr().__ge__(other)
|
|
|
|
def __abs__(self):
|
|
return abs(self.tocsr())
|
|
|
|
def __round__(self, ndigits=0):
|
|
return round(self.tocsr(), ndigits=ndigits)
|
|
|
|
def _add_sparse(self, other):
|
|
return self.tocsr()._add_sparse(other)
|
|
|
|
def _add_dense(self, other):
|
|
return self.tocoo()._add_dense(other)
|
|
|
|
def _sub_sparse(self, other):
|
|
return self.tocsr()._sub_sparse(other)
|
|
|
|
def _sub_dense(self, other):
|
|
return self.todense() - other
|
|
|
|
def _rsub_dense(self, other):
|
|
# note: this can't be replaced by other + (-self) for unsigned types
|
|
return other - self.todense()
|
|
|
|
def __add__(self, other): # self + other
|
|
if isscalarlike(other):
|
|
if other == 0:
|
|
return self.copy()
|
|
# Now we would add this scalar to every element.
|
|
raise NotImplementedError('adding a nonzero scalar to a '
|
|
'sparse matrix is not supported')
|
|
elif isspmatrix(other):
|
|
if other.shape != self.shape:
|
|
raise ValueError("inconsistent shapes")
|
|
return self._add_sparse(other)
|
|
elif isdense(other):
|
|
other = np.broadcast_to(other, self.shape)
|
|
return self._add_dense(other)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __radd__(self,other): # other + self
|
|
return self.__add__(other)
|
|
|
|
def __sub__(self, other): # self - other
|
|
if isscalarlike(other):
|
|
if other == 0:
|
|
return self.copy()
|
|
raise NotImplementedError('subtracting a nonzero scalar from a '
|
|
'sparse matrix is not supported')
|
|
elif isspmatrix(other):
|
|
if other.shape != self.shape:
|
|
raise ValueError("inconsistent shapes")
|
|
return self._sub_sparse(other)
|
|
elif isdense(other):
|
|
other = np.broadcast_to(other, self.shape)
|
|
return self._sub_dense(other)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __rsub__(self,other): # other - self
|
|
if isscalarlike(other):
|
|
if other == 0:
|
|
return -self.copy()
|
|
raise NotImplementedError('subtracting a sparse matrix from a '
|
|
'nonzero scalar is not supported')
|
|
elif isdense(other):
|
|
other = np.broadcast_to(other, self.shape)
|
|
return self._rsub_dense(other)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __mul__(self, other):
|
|
"""interpret other and call one of the following
|
|
|
|
self._mul_scalar()
|
|
self._mul_vector()
|
|
self._mul_multivector()
|
|
self._mul_sparse_matrix()
|
|
"""
|
|
|
|
M, N = self.shape
|
|
|
|
if other.__class__ is np.ndarray:
|
|
# Fast path for the most common case
|
|
if other.shape == (N,):
|
|
return self._mul_vector(other)
|
|
elif other.shape == (N, 1):
|
|
return self._mul_vector(other.ravel()).reshape(M, 1)
|
|
elif other.ndim == 2 and other.shape[0] == N:
|
|
return self._mul_multivector(other)
|
|
|
|
if isscalarlike(other):
|
|
# scalar value
|
|
return self._mul_scalar(other)
|
|
|
|
if issparse(other):
|
|
if self.shape[1] != other.shape[0]:
|
|
raise ValueError('dimension mismatch')
|
|
return self._mul_sparse_matrix(other)
|
|
|
|
# If it's a list or whatever, treat it like a matrix
|
|
other_a = np.asanyarray(other)
|
|
|
|
if other_a.ndim == 0 and other_a.dtype == np.object_:
|
|
# Not interpretable as an array; return NotImplemented so that
|
|
# other's __rmul__ can kick in if that's implemented.
|
|
return NotImplemented
|
|
|
|
try:
|
|
other.shape
|
|
except AttributeError:
|
|
other = other_a
|
|
|
|
if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1:
|
|
# dense row or column vector
|
|
if other.shape != (N,) and other.shape != (N, 1):
|
|
raise ValueError('dimension mismatch')
|
|
|
|
result = self._mul_vector(np.ravel(other))
|
|
|
|
if isinstance(other, np.matrix):
|
|
result = asmatrix(result)
|
|
|
|
if other.ndim == 2 and other.shape[1] == 1:
|
|
# If 'other' was an (nx1) column vector, reshape the result
|
|
result = result.reshape(-1, 1)
|
|
|
|
return result
|
|
|
|
elif other.ndim == 2:
|
|
##
|
|
# dense 2D array or matrix ("multivector")
|
|
|
|
if other.shape[0] != self.shape[1]:
|
|
raise ValueError('dimension mismatch')
|
|
|
|
result = self._mul_multivector(np.asarray(other))
|
|
|
|
if isinstance(other, np.matrix):
|
|
result = asmatrix(result)
|
|
|
|
return result
|
|
|
|
else:
|
|
raise ValueError('could not interpret dimensions')
|
|
|
|
# by default, use CSR for __mul__ handlers
|
|
def _mul_scalar(self, other):
|
|
return self.tocsr()._mul_scalar(other)
|
|
|
|
def _mul_vector(self, other):
|
|
return self.tocsr()._mul_vector(other)
|
|
|
|
def _mul_multivector(self, other):
|
|
return self.tocsr()._mul_multivector(other)
|
|
|
|
def _mul_sparse_matrix(self, other):
|
|
return self.tocsr()._mul_sparse_matrix(other)
|
|
|
|
def __rmul__(self, other): # other * self
|
|
if isscalarlike(other):
|
|
return self.__mul__(other)
|
|
else:
|
|
# Don't use asarray unless we have to
|
|
try:
|
|
tr = other.transpose()
|
|
except AttributeError:
|
|
tr = np.asarray(other).transpose()
|
|
return (self.transpose() * tr).transpose()
|
|
|
|
#######################
|
|
# matmul (@) operator #
|
|
#######################
|
|
|
|
def __matmul__(self, other):
|
|
if isscalarlike(other):
|
|
raise ValueError("Scalar operands are not allowed, "
|
|
"use '*' instead")
|
|
return self.__mul__(other)
|
|
|
|
def __rmatmul__(self, other):
|
|
if isscalarlike(other):
|
|
raise ValueError("Scalar operands are not allowed, "
|
|
"use '*' instead")
|
|
return self.__rmul__(other)
|
|
|
|
####################
|
|
# Other Arithmetic #
|
|
####################
|
|
|
|
def _divide(self, other, true_divide=False, rdivide=False):
|
|
if isscalarlike(other):
|
|
if rdivide:
|
|
if true_divide:
|
|
return np.true_divide(other, self.todense())
|
|
else:
|
|
return np.divide(other, self.todense())
|
|
|
|
if true_divide and np.can_cast(self.dtype, np.float_):
|
|
return self.astype(np.float_)._mul_scalar(1./other)
|
|
else:
|
|
r = self._mul_scalar(1./other)
|
|
|
|
scalar_dtype = np.asarray(other).dtype
|
|
if (np.issubdtype(self.dtype, np.integer) and
|
|
np.issubdtype(scalar_dtype, np.integer)):
|
|
return r.astype(self.dtype)
|
|
else:
|
|
return r
|
|
|
|
elif isdense(other):
|
|
if not rdivide:
|
|
if true_divide:
|
|
return np.true_divide(self.todense(), other)
|
|
else:
|
|
return np.divide(self.todense(), other)
|
|
else:
|
|
if true_divide:
|
|
return np.true_divide(other, self.todense())
|
|
else:
|
|
return np.divide(other, self.todense())
|
|
elif isspmatrix(other):
|
|
if rdivide:
|
|
return other._divide(self, true_divide, rdivide=False)
|
|
|
|
self_csr = self.tocsr()
|
|
if true_divide and np.can_cast(self.dtype, np.float_):
|
|
return self_csr.astype(np.float_)._divide_sparse(other)
|
|
else:
|
|
return self_csr._divide_sparse(other)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __truediv__(self, other):
|
|
return self._divide(other, true_divide=True)
|
|
|
|
def __div__(self, other):
|
|
# Always do true division
|
|
return self._divide(other, true_divide=True)
|
|
|
|
def __rtruediv__(self, other):
|
|
# Implementing this as the inverse would be too magical -- bail out
|
|
return NotImplemented
|
|
|
|
def __rdiv__(self, other):
|
|
# Implementing this as the inverse would be too magical -- bail out
|
|
return NotImplemented
|
|
|
|
def __neg__(self):
|
|
return -self.tocsr()
|
|
|
|
def __iadd__(self, other):
|
|
return NotImplemented
|
|
|
|
def __isub__(self, other):
|
|
return NotImplemented
|
|
|
|
def __imul__(self, other):
|
|
return NotImplemented
|
|
|
|
def __idiv__(self, other):
|
|
return self.__itruediv__(other)
|
|
|
|
def __itruediv__(self, other):
|
|
return NotImplemented
|
|
|
|
def __pow__(self, other):
|
|
if self.shape[0] != self.shape[1]:
|
|
raise TypeError('matrix is not square')
|
|
|
|
if isintlike(other):
|
|
other = int(other)
|
|
if other < 0:
|
|
raise ValueError('exponent must be >= 0')
|
|
|
|
if other == 0:
|
|
from .construct import eye
|
|
return eye(self.shape[0], dtype=self.dtype)
|
|
elif other == 1:
|
|
return self.copy()
|
|
else:
|
|
tmp = self.__pow__(other//2)
|
|
if (other % 2):
|
|
return self * tmp * tmp
|
|
else:
|
|
return tmp * tmp
|
|
elif isscalarlike(other):
|
|
raise ValueError('exponent must be an integer')
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __getattr__(self, attr):
|
|
if attr == 'A':
|
|
return self.toarray()
|
|
elif attr == 'T':
|
|
return self.transpose()
|
|
elif attr == 'H':
|
|
return self.getH()
|
|
elif attr == 'real':
|
|
return self._real()
|
|
elif attr == 'imag':
|
|
return self._imag()
|
|
elif attr == 'size':
|
|
return self.getnnz()
|
|
else:
|
|
raise AttributeError(attr + " not found")
|
|
|
|
def transpose(self, axes=None, copy=False):
|
|
"""
|
|
Reverses the dimensions of the sparse matrix.
|
|
|
|
Parameters
|
|
----------
|
|
axes : None, optional
|
|
This argument is in the signature *solely* for NumPy
|
|
compatibility reasons. Do not pass in anything except
|
|
for the default value.
|
|
copy : bool, optional
|
|
Indicates whether or not attributes of `self` should be
|
|
copied whenever possible. The degree to which attributes
|
|
are copied varies depending on the type of sparse matrix
|
|
being used.
|
|
|
|
Returns
|
|
-------
|
|
p : `self` with the dimensions reversed.
|
|
|
|
See Also
|
|
--------
|
|
numpy.matrix.transpose : NumPy's implementation of 'transpose'
|
|
for matrices
|
|
"""
|
|
return self.tocsr(copy=copy).transpose(axes=axes, copy=False)
|
|
|
|
def conj(self, copy=True):
|
|
"""Element-wise complex conjugation.
|
|
|
|
If the matrix is of non-complex data type and `copy` is False,
|
|
this method does nothing and the data is not copied.
|
|
|
|
Parameters
|
|
----------
|
|
copy : bool, optional
|
|
If True, the result is guaranteed to not share data with self.
|
|
|
|
Returns
|
|
-------
|
|
A : The element-wise complex conjugate.
|
|
|
|
"""
|
|
if np.issubdtype(self.dtype, np.complexfloating):
|
|
return self.tocsr(copy=copy).conj(copy=False)
|
|
elif copy:
|
|
return self.copy()
|
|
else:
|
|
return self
|
|
|
|
def conjugate(self, copy=True):
|
|
return self.conj(copy=copy)
|
|
|
|
conjugate.__doc__ = conj.__doc__
|
|
|
|
# Renamed conjtranspose() -> getH() for compatibility with dense matrices
|
|
def getH(self):
|
|
"""Return the Hermitian transpose of this matrix.
|
|
|
|
See Also
|
|
--------
|
|
numpy.matrix.getH : NumPy's implementation of `getH` for matrices
|
|
"""
|
|
return self.transpose().conj()
|
|
|
|
def _real(self):
|
|
return self.tocsr()._real()
|
|
|
|
def _imag(self):
|
|
return self.tocsr()._imag()
|
|
|
|
def nonzero(self):
|
|
"""nonzero indices
|
|
|
|
Returns a tuple of arrays (row,col) containing the indices
|
|
of the non-zero elements of the matrix.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_matrix
|
|
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
|
|
>>> A.nonzero()
|
|
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
|
|
|
|
"""
|
|
|
|
# convert to COOrdinate format
|
|
A = self.tocoo()
|
|
nz_mask = A.data != 0
|
|
return (A.row[nz_mask], A.col[nz_mask])
|
|
|
|
def getcol(self, j):
|
|
"""Returns a copy of column j of the matrix, as an (m x 1) sparse
|
|
matrix (column vector).
|
|
"""
|
|
# Spmatrix subclasses should override this method for efficiency.
|
|
# Post-multiply by a (n x 1) column vector 'a' containing all zeros
|
|
# except for a_j = 1
|
|
from .csc import csc_matrix
|
|
n = self.shape[1]
|
|
if j < 0:
|
|
j += n
|
|
if j < 0 or j >= n:
|
|
raise IndexError("index out of bounds")
|
|
col_selector = csc_matrix(([1], [[j], [0]]),
|
|
shape=(n, 1), dtype=self.dtype)
|
|
return self * col_selector
|
|
|
|
def getrow(self, i):
|
|
"""Returns a copy of row i of the matrix, as a (1 x n) sparse
|
|
matrix (row vector).
|
|
"""
|
|
# Spmatrix subclasses should override this method for efficiency.
|
|
# Pre-multiply by a (1 x m) row vector 'a' containing all zeros
|
|
# except for a_i = 1
|
|
from .csr import csr_matrix
|
|
m = self.shape[0]
|
|
if i < 0:
|
|
i += m
|
|
if i < 0 or i >= m:
|
|
raise IndexError("index out of bounds")
|
|
row_selector = csr_matrix(([1], [[0], [i]]),
|
|
shape=(1, m), dtype=self.dtype)
|
|
return row_selector * self
|
|
|
|
# def __array__(self):
|
|
# return self.toarray()
|
|
|
|
def todense(self, order=None, out=None):
|
|
"""
|
|
Return a dense matrix representation of this matrix.
|
|
|
|
Parameters
|
|
----------
|
|
order : {'C', 'F'}, optional
|
|
Whether to store multi-dimensional data in C (row-major)
|
|
or Fortran (column-major) order in memory. The default
|
|
is 'None', indicating the NumPy default of C-ordered.
|
|
Cannot be specified in conjunction with the `out`
|
|
argument.
|
|
|
|
out : ndarray, 2-D, optional
|
|
If specified, uses this array (or `numpy.matrix`) as the
|
|
output buffer instead of allocating a new array to
|
|
return. The provided array must have the same shape and
|
|
dtype as the sparse matrix on which you are calling the
|
|
method.
|
|
|
|
Returns
|
|
-------
|
|
arr : numpy.matrix, 2-D
|
|
A NumPy matrix object with the same shape and containing
|
|
the same data represented by the sparse matrix, with the
|
|
requested memory order. If `out` was passed and was an
|
|
array (rather than a `numpy.matrix`), it will be filled
|
|
with the appropriate values and returned wrapped in a
|
|
`numpy.matrix` object that shares the same memory.
|
|
"""
|
|
return asmatrix(self.toarray(order=order, out=out))
|
|
|
|
def toarray(self, order=None, out=None):
|
|
"""
|
|
Return a dense ndarray representation of this matrix.
|
|
|
|
Parameters
|
|
----------
|
|
order : {'C', 'F'}, optional
|
|
Whether to store multidimensional data in C (row-major)
|
|
or Fortran (column-major) order in memory. The default
|
|
is 'None', indicating the NumPy default of C-ordered.
|
|
Cannot be specified in conjunction with the `out`
|
|
argument.
|
|
|
|
out : ndarray, 2-D, optional
|
|
If specified, uses this array as the output buffer
|
|
instead of allocating a new array to return. The provided
|
|
array must have the same shape and dtype as the sparse
|
|
matrix on which you are calling the method. For most
|
|
sparse types, `out` is required to be memory contiguous
|
|
(either C or Fortran ordered).
|
|
|
|
Returns
|
|
-------
|
|
arr : ndarray, 2-D
|
|
An array with the same shape and containing the same
|
|
data represented by the sparse matrix, with the requested
|
|
memory order. If `out` was passed, the same object is
|
|
returned after being modified in-place to contain the
|
|
appropriate values.
|
|
"""
|
|
return self.tocoo(copy=False).toarray(order=order, out=out)
|
|
|
|
# Any sparse matrix format deriving from spmatrix must define one of
|
|
# tocsr or tocoo. The other conversion methods may be implemented for
|
|
# efficiency, but are not required.
|
|
def tocsr(self, copy=False):
|
|
"""Convert this matrix to Compressed Sparse Row format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant csr_matrix.
|
|
"""
|
|
return self.tocoo(copy=copy).tocsr(copy=False)
|
|
|
|
def todok(self, copy=False):
|
|
"""Convert this matrix to Dictionary Of Keys format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant dok_matrix.
|
|
"""
|
|
return self.tocoo(copy=copy).todok(copy=False)
|
|
|
|
def tocoo(self, copy=False):
|
|
"""Convert this matrix to COOrdinate format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant coo_matrix.
|
|
"""
|
|
return self.tocsr(copy=False).tocoo(copy=copy)
|
|
|
|
def tolil(self, copy=False):
|
|
"""Convert this matrix to List of Lists format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant lil_matrix.
|
|
"""
|
|
return self.tocsr(copy=False).tolil(copy=copy)
|
|
|
|
def todia(self, copy=False):
|
|
"""Convert this matrix to sparse DIAgonal format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant dia_matrix.
|
|
"""
|
|
return self.tocoo(copy=copy).todia(copy=False)
|
|
|
|
def tobsr(self, blocksize=None, copy=False):
|
|
"""Convert this matrix to Block Sparse Row format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant bsr_matrix.
|
|
|
|
When blocksize=(R, C) is provided, it will be used for construction of
|
|
the bsr_matrix.
|
|
"""
|
|
return self.tocsr(copy=False).tobsr(blocksize=blocksize, copy=copy)
|
|
|
|
def tocsc(self, copy=False):
|
|
"""Convert this matrix to Compressed Sparse Column format.
|
|
|
|
With copy=False, the data/indices may be shared between this matrix and
|
|
the resultant csc_matrix.
|
|
"""
|
|
return self.tocsr(copy=copy).tocsc(copy=False)
|
|
|
|
def copy(self):
|
|
"""Returns a copy of this matrix.
|
|
|
|
No data/indices will be shared between the returned value and current
|
|
matrix.
|
|
"""
|
|
return self.__class__(self, copy=True)
|
|
|
|
def sum(self, axis=None, dtype=None, out=None):
|
|
"""
|
|
Sum the matrix elements over a given axis.
|
|
|
|
Parameters
|
|
----------
|
|
axis : {-2, -1, 0, 1, None} optional
|
|
Axis along which the sum is computed. The default is to
|
|
compute the sum of all the matrix elements, returning a scalar
|
|
(i.e., `axis` = `None`).
|
|
dtype : dtype, optional
|
|
The type of the returned matrix and of the accumulator in which
|
|
the elements are summed. The dtype of `a` is used by default
|
|
unless `a` has an integer dtype of less precision than the default
|
|
platform integer. In that case, if `a` is signed then the platform
|
|
integer is used while if `a` is unsigned then an unsigned integer
|
|
of the same precision as the platform integer is used.
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
out : np.matrix, optional
|
|
Alternative output matrix in which to place the result. It must
|
|
have the same shape as the expected output, but the type of the
|
|
output values will be cast if necessary.
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Returns
|
|
-------
|
|
sum_along_axis : np.matrix
|
|
A matrix with the same shape as `self`, with the specified
|
|
axis removed.
|
|
|
|
See Also
|
|
--------
|
|
numpy.matrix.sum : NumPy's implementation of 'sum' for matrices
|
|
|
|
"""
|
|
validateaxis(axis)
|
|
|
|
# We use multiplication by a matrix of ones to achieve this.
|
|
# For some sparse matrix formats more efficient methods are
|
|
# possible -- these should override this function.
|
|
m, n = self.shape
|
|
|
|
# Mimic numpy's casting.
|
|
res_dtype = get_sum_dtype(self.dtype)
|
|
|
|
if axis is None:
|
|
# sum over rows and columns
|
|
return (self * asmatrix(np.ones(
|
|
(n, 1), dtype=res_dtype))).sum(
|
|
dtype=dtype, out=out)
|
|
|
|
if axis < 0:
|
|
axis += 2
|
|
|
|
# axis = 0 or 1 now
|
|
if axis == 0:
|
|
# sum over columns
|
|
ret = asmatrix(np.ones(
|
|
(1, m), dtype=res_dtype)) * self
|
|
else:
|
|
# sum over rows
|
|
ret = self * asmatrix(
|
|
np.ones((n, 1), dtype=res_dtype))
|
|
|
|
if out is not None and out.shape != ret.shape:
|
|
raise ValueError("dimensions do not match")
|
|
|
|
return ret.sum(axis=(), dtype=dtype, out=out)
|
|
|
|
def mean(self, axis=None, dtype=None, out=None):
|
|
"""
|
|
Compute the arithmetic mean along the specified axis.
|
|
|
|
Returns the average of the matrix elements. The average is taken
|
|
over all elements in the matrix by default, otherwise over the
|
|
specified axis. `float64` intermediate and return values are used
|
|
for integer inputs.
|
|
|
|
Parameters
|
|
----------
|
|
axis : {-2, -1, 0, 1, None} optional
|
|
Axis along which the mean is computed. The default is to compute
|
|
the mean of all elements in the matrix (i.e., `axis` = `None`).
|
|
dtype : data-type, optional
|
|
Type to use in computing the mean. For integer inputs, the default
|
|
is `float64`; for floating point inputs, it is the same as the
|
|
input dtype.
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
out : np.matrix, optional
|
|
Alternative output matrix in which to place the result. It must
|
|
have the same shape as the expected output, but the type of the
|
|
output values will be cast if necessary.
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Returns
|
|
-------
|
|
m : np.matrix
|
|
|
|
See Also
|
|
--------
|
|
numpy.matrix.mean : NumPy's implementation of 'mean' for matrices
|
|
|
|
"""
|
|
def _is_integral(dtype):
|
|
return (np.issubdtype(dtype, np.integer) or
|
|
np.issubdtype(dtype, np.bool_))
|
|
|
|
validateaxis(axis)
|
|
|
|
res_dtype = self.dtype.type
|
|
integral = _is_integral(self.dtype)
|
|
|
|
# output dtype
|
|
if dtype is None:
|
|
if integral:
|
|
res_dtype = np.float64
|
|
else:
|
|
res_dtype = np.dtype(dtype).type
|
|
|
|
# intermediate dtype for summation
|
|
inter_dtype = np.float64 if integral else res_dtype
|
|
inter_self = self.astype(inter_dtype)
|
|
|
|
if axis is None:
|
|
return (inter_self / np.array(
|
|
self.shape[0] * self.shape[1]))\
|
|
.sum(dtype=res_dtype, out=out)
|
|
|
|
if axis < 0:
|
|
axis += 2
|
|
|
|
# axis = 0 or 1 now
|
|
if axis == 0:
|
|
return (inter_self * (1.0 / self.shape[0])).sum(
|
|
axis=0, dtype=res_dtype, out=out)
|
|
else:
|
|
return (inter_self * (1.0 / self.shape[1])).sum(
|
|
axis=1, dtype=res_dtype, out=out)
|
|
|
|
def diagonal(self, k=0):
|
|
"""Returns the kth diagonal of the matrix.
|
|
|
|
Parameters
|
|
----------
|
|
k : int, optional
|
|
Which diagonal to get, corresponding to elements a[i, i+k].
|
|
Default: 0 (the main diagonal).
|
|
|
|
.. versionadded:: 1.0
|
|
|
|
See also
|
|
--------
|
|
numpy.diagonal : Equivalent numpy function.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_matrix
|
|
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
|
|
>>> A.diagonal()
|
|
array([1, 0, 5])
|
|
>>> A.diagonal(k=1)
|
|
array([2, 3])
|
|
"""
|
|
return self.tocsr().diagonal(k=k)
|
|
|
|
def setdiag(self, values, k=0):
|
|
"""
|
|
Set diagonal or off-diagonal elements of the array.
|
|
|
|
Parameters
|
|
----------
|
|
values : array_like
|
|
New values of the diagonal elements.
|
|
|
|
Values may have any length. If the diagonal is longer than values,
|
|
then the remaining diagonal entries will not be set. If values if
|
|
longer than the diagonal, then the remaining values are ignored.
|
|
|
|
If a scalar value is given, all of the diagonal is set to it.
|
|
|
|
k : int, optional
|
|
Which off-diagonal to set, corresponding to elements a[i,i+k].
|
|
Default: 0 (the main diagonal).
|
|
|
|
"""
|
|
M, N = self.shape
|
|
if (k > 0 and k >= N) or (k < 0 and -k >= M):
|
|
raise ValueError("k exceeds matrix dimensions")
|
|
self._setdiag(np.asarray(values), k)
|
|
|
|
def _setdiag(self, values, k):
|
|
M, N = self.shape
|
|
if k < 0:
|
|
if values.ndim == 0:
|
|
# broadcast
|
|
max_index = min(M+k, N)
|
|
for i in range(max_index):
|
|
self[i - k, i] = values
|
|
else:
|
|
max_index = min(M+k, N, len(values))
|
|
if max_index <= 0:
|
|
return
|
|
for i, v in enumerate(values[:max_index]):
|
|
self[i - k, i] = v
|
|
else:
|
|
if values.ndim == 0:
|
|
# broadcast
|
|
max_index = min(M, N-k)
|
|
for i in range(max_index):
|
|
self[i, i + k] = values
|
|
else:
|
|
max_index = min(M, N-k, len(values))
|
|
if max_index <= 0:
|
|
return
|
|
for i, v in enumerate(values[:max_index]):
|
|
self[i, i + k] = v
|
|
|
|
def _process_toarray_args(self, order, out):
|
|
if out is not None:
|
|
if order is not None:
|
|
raise ValueError('order cannot be specified if out '
|
|
'is not None')
|
|
if out.shape != self.shape or out.dtype != self.dtype:
|
|
raise ValueError('out array must be same dtype and shape as '
|
|
'sparse matrix')
|
|
out[...] = 0.
|
|
return out
|
|
else:
|
|
return np.zeros(self.shape, dtype=self.dtype, order=order)
|
|
|
|
|
|
def isspmatrix(x):
|
|
"""Is x of a sparse matrix type?
|
|
|
|
Parameters
|
|
----------
|
|
x
|
|
object to check for being a sparse matrix
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if x is a sparse matrix, False otherwise
|
|
|
|
Notes
|
|
-----
|
|
issparse and isspmatrix are aliases for the same function.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.sparse import csr_matrix, isspmatrix
|
|
>>> isspmatrix(csr_matrix([[5]]))
|
|
True
|
|
|
|
>>> from scipy.sparse import isspmatrix
|
|
>>> isspmatrix(5)
|
|
False
|
|
"""
|
|
return isinstance(x, spmatrix)
|
|
|
|
|
|
issparse = isspmatrix
|
|
|