1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/ndimage/_ni_docstrings.py

128 lines
5.2 KiB

"""Docstring components common to several ndimage functions."""
from scipy._lib import doccer
__all__ = ['docfiller']
_input_doc = (
"""input : array_like
The input array.""")
_axis_doc = (
"""axis : int, optional
The axis of `input` along which to calculate. Default is -1.""")
_output_doc = (
"""output : array or dtype, optional
The array in which to place the output, or the dtype of the
returned array. By default an array of the same dtype as input
will be created.""")
_size_foot_doc = (
"""size : scalar or tuple, optional
See footprint, below. Ignored if footprint is given.
footprint : array, optional
Either `size` or `footprint` must be defined. `size` gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
`footprint` is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus ``size=(n,m)`` is equivalent
to ``footprint=np.ones((n,m))``. We adjust `size` to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and `size` is 2, then the actual size used is
(2,2,2). When `footprint` is given, `size` is ignored.""")
_mode_doc = (
"""mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the input array is extended
beyond its boundaries. Default is 'reflect'. Behavior for each valid
value is as follows:
'reflect' (`d c b a | a b c d | d c b a`)
The input is extended by reflecting about the edge of the last
pixel.
'constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter.
'nearest' (`a a a a | a b c d | d d d d`)
The input is extended by replicating the last pixel.
'mirror' (`d c b | a b c d | c b a`)
The input is extended by reflecting about the center of the last
pixel.
'wrap' (`a b c d | a b c d | a b c d`)
The input is extended by wrapping around to the opposite edge.""")
_mode_multiple_doc = (
"""mode : str or sequence, optional
The `mode` parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
'reflect'. The valid values and their behavior is as follows:
'reflect' (`d c b a | a b c d | d c b a`)
The input is extended by reflecting about the edge of the last
pixel.
'constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter.
'nearest' (`a a a a | a b c d | d d d d`)
The input is extended by replicating the last pixel.
'mirror' (`d c b | a b c d | c b a`)
The input is extended by reflecting about the center of the last
pixel.
'wrap' (`a b c d | a b c d | a b c d`)
The input is extended by wrapping around to the opposite edge.""")
_cval_doc = (
"""cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.""")
_origin_doc = (
"""origin : int, optional
Controls the placement of the filter on the input array's pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right.""")
_origin_multiple_doc = (
"""origin : int or sequence, optional
Controls the placement of the filter on the input array's pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.""")
_extra_arguments_doc = (
"""extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function.""")
_extra_keywords_doc = (
"""extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function.""")
_prefilter_doc = (
"""prefilter : bool, optional
Determines if the input array is prefiltered with `spline_filter`
before interpolation. The default is True, which will create a
temporary `float64` array of filtered values if `order > 1`. If
setting this to False, the output will be slightly blurred if
`order > 1`, unless the input is prefiltered, i.e. it is the result
of calling `spline_filter` on the original input.""")
docdict = {
'input': _input_doc,
'axis': _axis_doc,
'output': _output_doc,
'size_foot': _size_foot_doc,
'mode': _mode_doc,
'mode_multiple': _mode_multiple_doc,
'cval': _cval_doc,
'origin': _origin_doc,
'origin_multiple': _origin_multiple_doc,
'extra_arguments': _extra_arguments_doc,
'extra_keywords': _extra_keywords_doc,
'prefilter': _prefilter_doc
}
docfiller = doccer.filldoc(docdict)