Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
8.9 KiB
223 lines
8.9 KiB
# -*- coding: utf-8 -*-
|
|
from collections.abc import Iterable
|
|
import numpy as np
|
|
|
|
from scipy._lib._util import _asarray_validated
|
|
from scipy.linalg import block_diag, LinAlgError
|
|
from .lapack import _compute_lwork, get_lapack_funcs
|
|
|
|
__all__ = ['cossin']
|
|
|
|
|
|
def cossin(X, p=None, q=None, separate=False,
|
|
swap_sign=False, compute_u=True, compute_vh=True):
|
|
"""
|
|
Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.
|
|
|
|
X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
|
|
where upper left block has the shape of ``(p, q)``::
|
|
|
|
┌ ┐
|
|
│ I 0 0 │ 0 0 0 │
|
|
┌ ┐ ┌ ┐│ 0 C 0 │ 0 -S 0 │┌ ┐*
|
|
│ X11 │ X12 │ │ U1 │ ││ 0 0 0 │ 0 0 -I ││ V1 │ │
|
|
│ ────┼──── │ = │────┼────││─────────┼─────────││────┼────│
|
|
│ X21 │ X22 │ │ │ U2 ││ 0 0 0 │ I 0 0 ││ │ V2 │
|
|
└ ┘ └ ┘│ 0 S 0 │ 0 C 0 │└ ┘
|
|
│ 0 0 I │ 0 0 0 │
|
|
└ ┘
|
|
|
|
``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
|
|
dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
|
|
respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
|
|
matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.
|
|
|
|
Moreover, the rank of the identity matrices are ``min(p, q) - r``,
|
|
``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
|
|
respectively.
|
|
|
|
X can be supplied either by itself and block specifications p, q or its
|
|
subblocks in an iterable from which the shapes would be derived. See the
|
|
examples below.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like, iterable
|
|
complex unitary or real orthogonal matrix to be decomposed, or iterable
|
|
of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
|
|
omitted.
|
|
p : int, optional
|
|
Number of rows of the upper left block ``X11``, used only when X is
|
|
given as an array.
|
|
q : int, optional
|
|
Number of columns of the upper left block ``X11``, used only when X is
|
|
given as an array.
|
|
separate : bool, optional
|
|
if ``True``, the low level components are returned instead of the
|
|
matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
|
|
``u``, ``cs``, ``vh``.
|
|
swap_sign : bool, optional
|
|
if ``True``, the ``-S``, ``-I`` block will be the bottom left,
|
|
otherwise (by default) they will be in the upper right block.
|
|
compute_u : bool, optional
|
|
if ``False``, ``u`` won't be computed and an empty array is returned.
|
|
compute_vh : bool, optional
|
|
if ``False``, ``vh`` won't be computed and an empty array is returned.
|
|
|
|
Returns
|
|
-------
|
|
u : ndarray
|
|
When ``compute_u=True``, contains the block diagonal orthogonal/unitary
|
|
matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
|
|
(``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
|
|
this contains the tuple of ``(U1, U2)``.
|
|
cs : ndarray
|
|
The cosine-sine factor with the structure described above.
|
|
If ``separate=True``, this contains the ``theta`` array containing the
|
|
angles in radians.
|
|
vh : ndarray
|
|
When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
|
|
matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
|
|
(``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
|
|
this contains the tuple of ``(V1H, V2H)``.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.linalg import cossin
|
|
>>> from scipy.stats import unitary_group
|
|
>>> x = unitary_group.rvs(4)
|
|
>>> u, cs, vdh = cossin(x, p=2, q=2)
|
|
>>> np.allclose(x, u @ cs @ vdh)
|
|
True
|
|
|
|
Same can be entered via subblocks without the need of ``p`` and ``q``. Also
|
|
let's skip the computation of ``u``
|
|
|
|
>>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
|
|
... compute_u=False)
|
|
>>> print(ue)
|
|
[]
|
|
>>> np.allclose(x, u @ cs @ vdh)
|
|
True
|
|
|
|
References
|
|
----------
|
|
.. [1] : Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
|
Algorithms, 50(1):33-65, 2009.
|
|
|
|
"""
|
|
|
|
if p or q:
|
|
p = 1 if p is None else int(p)
|
|
q = 1 if q is None else int(q)
|
|
X = _asarray_validated(X, check_finite=True)
|
|
if not np.equal(*X.shape):
|
|
raise ValueError("Cosine Sine decomposition only supports square"
|
|
" matrices, got {}".format(X.shape))
|
|
m = X.shape[0]
|
|
if p >= m or p <= 0:
|
|
raise ValueError("invalid p={}, 0<p<{} must hold"
|
|
.format(p, X.shape[0]))
|
|
if q >= m or q <= 0:
|
|
raise ValueError("invalid q={}, 0<q<{} must hold"
|
|
.format(q, X.shape[0]))
|
|
|
|
x11, x12, x21, x22 = X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:]
|
|
elif not isinstance(X, Iterable):
|
|
raise ValueError("When p and q are None, X must be an Iterable"
|
|
" containing the subblocks of X")
|
|
else:
|
|
if len(X) != 4:
|
|
raise ValueError("When p and q are None, exactly four arrays"
|
|
" should be in X, got {}".format(len(X)))
|
|
|
|
x11, x12, x21, x22 = [np.atleast_2d(x) for x in X]
|
|
for name, block in zip(["x11", "x12", "x21", "x22"],
|
|
[x11, x12, x21, x22]):
|
|
if block.shape[1] == 0:
|
|
raise ValueError("{} can't be empty".format(name))
|
|
p, q = x11.shape
|
|
mmp, mmq = x22.shape
|
|
|
|
if x12.shape != (p, mmq):
|
|
raise ValueError("Invalid x12 dimensions: desired {}, "
|
|
"got {}".format((p, mmq), x12.shape))
|
|
|
|
if x21.shape != (mmp, q):
|
|
raise ValueError("Invalid x21 dimensions: desired {}, "
|
|
"got {}".format((mmp, q), x21.shape))
|
|
|
|
if p + mmp != q + mmq:
|
|
raise ValueError("The subblocks have compatible sizes but "
|
|
"don't form a square array (instead they form a"
|
|
" {}x{} array). This might be due to missing "
|
|
"p, q arguments.".format(p + mmp, q + mmq))
|
|
|
|
m = p + mmp
|
|
|
|
cplx = any([np.iscomplexobj(x) for x in [x11, x12, x21, x22]])
|
|
driver = "uncsd" if cplx else "orcsd"
|
|
csd, csd_lwork = get_lapack_funcs([driver, driver + "_lwork"],
|
|
[x11, x12, x21, x22])
|
|
lwork = _compute_lwork(csd_lwork, m=m, p=p, q=q)
|
|
lwork_args = ({'lwork': lwork[0], 'lrwork': lwork[1]} if cplx else
|
|
{'lwork': lwork})
|
|
*_, theta, u1, u2, v1h, v2h, info = csd(x11=x11, x12=x12, x21=x21, x22=x22,
|
|
compute_u1=compute_u,
|
|
compute_u2=compute_u,
|
|
compute_v1t=compute_vh,
|
|
compute_v2t=compute_vh,
|
|
trans=False, signs=swap_sign,
|
|
**lwork_args)
|
|
|
|
method_name = csd.typecode + driver
|
|
if info < 0:
|
|
raise ValueError('illegal value in argument {} of internal {}'
|
|
.format(-info, method_name))
|
|
if info > 0:
|
|
raise LinAlgError("{} did not converge: {}".format(method_name, info))
|
|
|
|
if separate:
|
|
return (u1, u2), theta, (v1h, v2h)
|
|
|
|
U = block_diag(u1, u2)
|
|
VDH = block_diag(v1h, v2h)
|
|
|
|
# Construct the middle factor CS
|
|
c = np.diag(np.cos(theta))
|
|
s = np.diag(np.sin(theta))
|
|
r = min(p, q, m - p, m - q)
|
|
n11 = min(p, q) - r
|
|
n12 = min(p, m - q) - r
|
|
n21 = min(m - p, q) - r
|
|
n22 = min(m - p, m - q) - r
|
|
Id = np.eye(np.max([n11, n12, n21, n22, r]), dtype=theta.dtype)
|
|
CS = np.zeros((m, m), dtype=theta.dtype)
|
|
|
|
CS[:n11, :n11] = Id[:n11, :n11]
|
|
|
|
xs = n11 + r
|
|
xe = n11 + r + n12
|
|
ys = n11 + n21 + n22 + 2 * r
|
|
ye = n11 + n21 + n22 + 2 * r + n12
|
|
CS[xs: xe, ys:ye] = Id[:n12, :n12] if swap_sign else -Id[:n12, :n12]
|
|
|
|
xs = p + n22 + r
|
|
xe = p + n22 + r + + n21
|
|
ys = n11 + r
|
|
ye = n11 + r + n21
|
|
CS[xs:xe, ys:ye] = -Id[:n21, :n21] if swap_sign else Id[:n21, :n21]
|
|
|
|
CS[p:p + n22, q:q + n22] = Id[:n22, :n22]
|
|
CS[n11:n11 + r, n11:n11 + r] = c
|
|
CS[p + n22:p + n22 + r, r + n21 + n22:2 * r + n21 + n22] = c
|
|
|
|
xs = n11
|
|
xe = n11 + r
|
|
ys = n11 + n21 + n22 + r
|
|
ye = n11 + n21 + n22 + 2 * r
|
|
CS[xs:xe, ys:ye] = s if swap_sign else -s
|
|
|
|
CS[p + n22:p + n22 + r, n11:n11 + r] = -s if swap_sign else s
|
|
|
|
return U, CS, VDH
|
|
|