1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/test_expressions.py

420 lines
14 KiB

import operator
import re
import numpy as np
from numpy.random import randn
import pytest
import pandas._testing as tm
from pandas.core.api import DataFrame, Index, Series
from pandas.core.computation import expressions as expr
_frame = DataFrame(randn(10000, 4), columns=list("ABCD"), dtype="float64")
_frame2 = DataFrame(randn(100, 4), columns=list("ABCD"), dtype="float64")
_mixed = DataFrame(
{
"A": _frame["A"].copy(),
"B": _frame["B"].astype("float32"),
"C": _frame["C"].astype("int64"),
"D": _frame["D"].astype("int32"),
}
)
_mixed2 = DataFrame(
{
"A": _frame2["A"].copy(),
"B": _frame2["B"].astype("float32"),
"C": _frame2["C"].astype("int64"),
"D": _frame2["D"].astype("int32"),
}
)
_integer = DataFrame(
np.random.randint(1, 100, size=(10001, 4)), columns=list("ABCD"), dtype="int64"
)
_integer2 = DataFrame(
np.random.randint(1, 100, size=(101, 4)), columns=list("ABCD"), dtype="int64"
)
@pytest.mark.skipif(not expr._USE_NUMEXPR, reason="not using numexpr")
class TestExpressions:
def setup_method(self, method):
self.frame = _frame.copy()
self.frame2 = _frame2.copy()
self.mixed = _mixed.copy()
self.mixed2 = _mixed2.copy()
self._MIN_ELEMENTS = expr._MIN_ELEMENTS
def teardown_method(self, method):
expr._MIN_ELEMENTS = self._MIN_ELEMENTS
def run_arithmetic(self, df, other):
expr._MIN_ELEMENTS = 0
operations = ["add", "sub", "mul", "mod", "truediv", "floordiv"]
for test_flex in [True, False]:
for arith in operations:
# TODO: share with run_binary
if test_flex:
op = lambda x, y: getattr(x, arith)(y)
op.__name__ = arith
else:
op = getattr(operator, arith)
expr.set_use_numexpr(False)
expected = op(df, other)
expr.set_use_numexpr(True)
result = op(df, other)
if arith == "truediv":
if expected.ndim == 1:
assert expected.dtype.kind == "f"
else:
assert all(x.kind == "f" for x in expected.dtypes.values)
tm.assert_equal(expected, result)
def run_binary(self, df, other):
"""
tests solely that the result is the same whether or not numexpr is
enabled. Need to test whether the function does the correct thing
elsewhere.
"""
expr._MIN_ELEMENTS = 0
expr.set_test_mode(True)
operations = ["gt", "lt", "ge", "le", "eq", "ne"]
for test_flex in [True, False]:
for arith in operations:
if test_flex:
op = lambda x, y: getattr(x, arith)(y)
op.__name__ = arith
else:
op = getattr(operator, arith)
expr.set_use_numexpr(False)
expected = op(df, other)
expr.set_use_numexpr(True)
expr.get_test_result()
result = op(df, other)
used_numexpr = expr.get_test_result()
assert used_numexpr, "Did not use numexpr as expected."
tm.assert_equal(expected, result)
def run_frame(self, df, other, run_binary=True):
self.run_arithmetic(df, other)
if run_binary:
expr.set_use_numexpr(False)
binary_comp = other + 1
expr.set_use_numexpr(True)
self.run_binary(df, binary_comp)
for i in range(len(df.columns)):
self.run_arithmetic(df.iloc[:, i], other.iloc[:, i])
# FIXME: dont leave commented-out
# series doesn't uses vec_compare instead of numexpr...
# binary_comp = other.iloc[:, i] + 1
# self.run_binary(df.iloc[:, i], binary_comp)
@pytest.mark.parametrize(
"df",
[
_integer,
_integer2,
# randint to get a case with zeros
_integer * np.random.randint(0, 2, size=np.shape(_integer)),
_frame,
_frame2,
_mixed,
_mixed2,
],
)
def test_arithmetic(self, df):
# TODO: FIGURE OUT HOW TO GET RUN_BINARY TO WORK WITH MIXED=...
# can't do arithmetic because comparison methods try to do *entire*
# frame instead of by-column
kinds = {x.kind for x in df.dtypes.values}
should = len(kinds) == 1
self.run_frame(df, df, run_binary=should)
def test_invalid(self):
# no op
result = expr._can_use_numexpr(
operator.add, None, self.frame, self.frame, "evaluate"
)
assert not result
# mixed
result = expr._can_use_numexpr(
operator.add, "+", self.mixed, self.frame, "evaluate"
)
assert not result
# min elements
result = expr._can_use_numexpr(
operator.add, "+", self.frame2, self.frame2, "evaluate"
)
assert not result
# ok, we only check on first part of expression
result = expr._can_use_numexpr(
operator.add, "+", self.frame, self.frame2, "evaluate"
)
assert result
@pytest.mark.parametrize(
"opname,op_str",
[("add", "+"), ("sub", "-"), ("mul", "*"), ("truediv", "/"), ("pow", "**")],
)
@pytest.mark.parametrize("left,right", [(_frame, _frame2), (_mixed, _mixed2)])
def test_binary_ops(self, opname, op_str, left, right):
def testit():
if opname == "pow":
# TODO: get this working
return
op = getattr(operator, opname)
result = expr._can_use_numexpr(op, op_str, left, left, "evaluate")
assert result != left._is_mixed_type
result = expr.evaluate(op, left, left, use_numexpr=True)
expected = expr.evaluate(op, left, left, use_numexpr=False)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
else:
tm.assert_numpy_array_equal(result, expected.values)
result = expr._can_use_numexpr(op, op_str, right, right, "evaluate")
assert not result
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
@pytest.mark.parametrize(
"opname,op_str",
[
("gt", ">"),
("lt", "<"),
("ge", ">="),
("le", "<="),
("eq", "=="),
("ne", "!="),
],
)
@pytest.mark.parametrize("left,right", [(_frame, _frame2), (_mixed, _mixed2)])
def test_comparison_ops(self, opname, op_str, left, right):
def testit():
f12 = left + 1
f22 = right + 1
op = getattr(operator, opname)
result = expr._can_use_numexpr(op, op_str, left, f12, "evaluate")
assert result != left._is_mixed_type
result = expr.evaluate(op, left, f12, use_numexpr=True)
expected = expr.evaluate(op, left, f12, use_numexpr=False)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
else:
tm.assert_numpy_array_equal(result, expected.values)
result = expr._can_use_numexpr(op, op_str, right, f22, "evaluate")
assert not result
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
@pytest.mark.parametrize("cond", [True, False])
@pytest.mark.parametrize("df", [_frame, _frame2, _mixed, _mixed2])
def test_where(self, cond, df):
def testit():
c = np.empty(df.shape, dtype=np.bool_)
c.fill(cond)
result = expr.where(c, df.values, df.values + 1)
expected = np.where(c, df.values, df.values + 1)
tm.assert_numpy_array_equal(result, expected)
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
@pytest.mark.parametrize(
"op_str,opname", [("/", "truediv"), ("//", "floordiv"), ("**", "pow")]
)
def test_bool_ops_raise_on_arithmetic(self, op_str, opname):
df = DataFrame({"a": np.random.rand(10) > 0.5, "b": np.random.rand(10) > 0.5})
msg = f"operator {repr(op_str)} not implemented for bool dtypes"
f = getattr(operator, opname)
err_msg = re.escape(msg)
with pytest.raises(NotImplementedError, match=err_msg):
f(df, df)
with pytest.raises(NotImplementedError, match=err_msg):
f(df.a, df.b)
with pytest.raises(NotImplementedError, match=err_msg):
f(df.a, True)
with pytest.raises(NotImplementedError, match=err_msg):
f(False, df.a)
with pytest.raises(NotImplementedError, match=err_msg):
f(False, df)
with pytest.raises(NotImplementedError, match=err_msg):
f(df, True)
@pytest.mark.parametrize(
"op_str,opname", [("+", "add"), ("*", "mul"), ("-", "sub")]
)
def test_bool_ops_warn_on_arithmetic(self, op_str, opname):
n = 10
df = DataFrame({"a": np.random.rand(n) > 0.5, "b": np.random.rand(n) > 0.5})
subs = {"+": "|", "*": "&", "-": "^"}
sub_funcs = {"|": "or_", "&": "and_", "^": "xor"}
f = getattr(operator, opname)
fe = getattr(operator, sub_funcs[subs[op_str]])
if op_str == "-":
# raises TypeError
return
with tm.use_numexpr(True, min_elements=5):
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df, df)
e = fe(df, df)
tm.assert_frame_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df.a, df.b)
e = fe(df.a, df.b)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df.a, True)
e = fe(df.a, True)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(False, df.a)
e = fe(False, df.a)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(False, df)
e = fe(False, df)
tm.assert_frame_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df, True)
e = fe(df, True)
tm.assert_frame_equal(r, e)
@pytest.mark.parametrize(
"test_input,expected",
[
(
DataFrame(
[[0, 1, 2, "aa"], [0, 1, 2, "aa"]], columns=["a", "b", "c", "dtype"]
),
DataFrame([[False, False], [False, False]], columns=["a", "dtype"]),
),
(
DataFrame(
[[0, 3, 2, "aa"], [0, 4, 2, "aa"], [0, 1, 1, "bb"]],
columns=["a", "b", "c", "dtype"],
),
DataFrame(
[[False, False], [False, False], [False, False]],
columns=["a", "dtype"],
),
),
],
)
def test_bool_ops_column_name_dtype(self, test_input, expected):
# GH 22383 - .ne fails if columns containing column name 'dtype'
result = test_input.loc[:, ["a", "dtype"]].ne(test_input.loc[:, ["a", "dtype"]])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"arith", ("add", "sub", "mul", "mod", "truediv", "floordiv")
)
@pytest.mark.parametrize("axis", (0, 1))
def test_frame_series_axis(self, axis, arith):
# GH#26736 Dataframe.floordiv(Series, axis=1) fails
df = self.frame
if axis == 1:
other = self.frame.iloc[0, :]
else:
other = self.frame.iloc[:, 0]
expr._MIN_ELEMENTS = 0
op_func = getattr(df, arith)
expr.set_use_numexpr(False)
expected = op_func(other, axis=axis)
expr.set_use_numexpr(True)
result = op_func(other, axis=axis)
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"op",
[
"__mod__",
pytest.param("__rmod__", marks=pytest.mark.xfail(reason="GH-36552")),
"__floordiv__",
"__rfloordiv__",
],
)
@pytest.mark.parametrize("box", [DataFrame, Series, Index])
@pytest.mark.parametrize("scalar", [-5, 5])
def test_python_semantics_with_numexpr_installed(self, op, box, scalar):
# https://github.com/pandas-dev/pandas/issues/36047
expr._MIN_ELEMENTS = 0
data = np.arange(-50, 50)
obj = box(data)
method = getattr(obj, op)
result = method(scalar)
# compare result with numpy
expr.set_use_numexpr(False)
expected = method(scalar)
expr.set_use_numexpr(True)
tm.assert_equal(result, expected)
# compare result element-wise with Python
for i, elem in enumerate(data):
if box == DataFrame:
scalar_result = result.iloc[i, 0]
else:
scalar_result = result[i]
try:
expected = getattr(int(elem), op)(scalar)
except ZeroDivisionError:
pass
else:
assert scalar_result == expected