Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
4.7 KiB
144 lines
4.7 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, DatetimeIndex, Series, date_range, timedelta_range
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestTimeSeries:
|
|
def test_timeseries_coercion(self):
|
|
idx = tm.makeDateIndex(10000)
|
|
ser = Series(np.random.randn(len(idx)), idx.astype(object))
|
|
assert ser.index.is_all_dates
|
|
assert isinstance(ser.index, DatetimeIndex)
|
|
|
|
def test_contiguous_boolean_preserve_freq(self):
|
|
rng = date_range("1/1/2000", "3/1/2000", freq="B")
|
|
|
|
mask = np.zeros(len(rng), dtype=bool)
|
|
mask[10:20] = True
|
|
|
|
masked = rng[mask]
|
|
expected = rng[10:20]
|
|
assert expected.freq == rng.freq
|
|
tm.assert_index_equal(masked, expected)
|
|
|
|
mask[22] = True
|
|
masked = rng[mask]
|
|
assert masked.freq is None
|
|
|
|
def test_promote_datetime_date(self):
|
|
rng = date_range("1/1/2000", periods=20)
|
|
ts = Series(np.random.randn(20), index=rng)
|
|
|
|
ts_slice = ts[5:]
|
|
ts2 = ts_slice.copy()
|
|
ts2.index = [x.date() for x in ts2.index]
|
|
|
|
result = ts + ts2
|
|
result2 = ts2 + ts
|
|
expected = ts + ts[5:]
|
|
expected.index = expected.index._with_freq(None)
|
|
tm.assert_series_equal(result, expected)
|
|
tm.assert_series_equal(result2, expected)
|
|
|
|
# test asfreq
|
|
result = ts2.asfreq("4H", method="ffill")
|
|
expected = ts[5:].asfreq("4H", method="ffill")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = rng.get_indexer(ts2.index)
|
|
expected = rng.get_indexer(ts_slice.index)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_groupby_count_dateparseerror(self):
|
|
dr = date_range(start="1/1/2012", freq="5min", periods=10)
|
|
|
|
# BAD Example, datetimes first
|
|
s = Series(np.arange(10), index=[dr, np.arange(10)])
|
|
grouped = s.groupby(lambda x: x[1] % 2 == 0)
|
|
result = grouped.count()
|
|
|
|
s = Series(np.arange(10), index=[np.arange(10), dr])
|
|
grouped = s.groupby(lambda x: x[0] % 2 == 0)
|
|
expected = grouped.count()
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_series_map_box_timedelta(self):
|
|
# GH 11349
|
|
s = Series(timedelta_range("1 day 1 s", periods=5, freq="h"))
|
|
|
|
def f(x):
|
|
return x.total_seconds()
|
|
|
|
s.map(f)
|
|
s.apply(f)
|
|
DataFrame(s).applymap(f)
|
|
|
|
def test_asfreq_resample_set_correct_freq(self):
|
|
# GH5613
|
|
# we test if .asfreq() and .resample() set the correct value for .freq
|
|
df = pd.DataFrame(
|
|
{"date": ["2012-01-01", "2012-01-02", "2012-01-03"], "col": [1, 2, 3]}
|
|
)
|
|
df = df.set_index(pd.to_datetime(df.date))
|
|
|
|
# testing the settings before calling .asfreq() and .resample()
|
|
assert df.index.freq is None
|
|
assert df.index.inferred_freq == "D"
|
|
|
|
# does .asfreq() set .freq correctly?
|
|
assert df.asfreq("D").index.freq == "D"
|
|
|
|
# does .resample() set .freq correctly?
|
|
assert df.resample("D").asfreq().index.freq == "D"
|
|
|
|
def test_view_tz(self):
|
|
# GH#24024
|
|
ser = pd.Series(pd.date_range("2000", periods=4, tz="US/Central"))
|
|
result = ser.view("i8")
|
|
expected = pd.Series(
|
|
[
|
|
946706400000000000,
|
|
946792800000000000,
|
|
946879200000000000,
|
|
946965600000000000,
|
|
]
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
|
def test_asarray_object_dt64(self, tz):
|
|
ser = pd.Series(pd.date_range("2000", periods=2, tz=tz))
|
|
|
|
with tm.assert_produces_warning(None):
|
|
# Future behavior (for tzaware case) with no warning
|
|
result = np.asarray(ser, dtype=object)
|
|
|
|
expected = np.array(
|
|
[pd.Timestamp("2000-01-01", tz=tz), pd.Timestamp("2000-01-02", tz=tz)]
|
|
)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_asarray_tz_naive(self):
|
|
# This shouldn't produce a warning.
|
|
ser = pd.Series(pd.date_range("2000", periods=2))
|
|
expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
|
|
result = np.asarray(ser)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_asarray_tz_aware(self):
|
|
tz = "US/Central"
|
|
ser = pd.Series(pd.date_range("2000", periods=2, tz=tz))
|
|
expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]")
|
|
result = np.asarray(ser, dtype="datetime64[ns]")
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# Old behavior with no warning
|
|
result = np.asarray(ser, dtype="M8[ns]")
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|