Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
7.5 KiB
228 lines
7.5 KiB
from copy import deepcopy
|
|
from operator import methodcaller
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, MultiIndex, Series, date_range
|
|
import pandas._testing as tm
|
|
|
|
from .test_generic import Generic
|
|
|
|
|
|
class TestDataFrame(Generic):
|
|
_typ = DataFrame
|
|
_comparator = lambda self, x, y: tm.assert_frame_equal(x, y)
|
|
|
|
def test_rename_mi(self):
|
|
df = DataFrame(
|
|
[11, 21, 31],
|
|
index=MultiIndex.from_tuples([("A", x) for x in ["a", "B", "c"]]),
|
|
)
|
|
df.rename(str.lower)
|
|
|
|
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
|
|
def test_set_axis_name(self, func):
|
|
df = pd.DataFrame([[1, 2], [3, 4]])
|
|
|
|
result = methodcaller(func, "foo")(df)
|
|
assert df.index.name is None
|
|
assert result.index.name == "foo"
|
|
|
|
result = methodcaller(func, "cols", axis=1)(df)
|
|
assert df.columns.name is None
|
|
assert result.columns.name == "cols"
|
|
|
|
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
|
|
def test_set_axis_name_mi(self, func):
|
|
df = DataFrame(
|
|
np.empty((3, 3)),
|
|
index=MultiIndex.from_tuples([("A", x) for x in list("aBc")]),
|
|
columns=MultiIndex.from_tuples([("C", x) for x in list("xyz")]),
|
|
)
|
|
|
|
level_names = ["L1", "L2"]
|
|
|
|
result = methodcaller(func, level_names)(df)
|
|
assert result.index.names == level_names
|
|
assert result.columns.names == [None, None]
|
|
|
|
result = methodcaller(func, level_names, axis=1)(df)
|
|
assert result.columns.names == ["L1", "L2"]
|
|
assert result.index.names == [None, None]
|
|
|
|
def test_nonzero_single_element(self):
|
|
|
|
# allow single item via bool method
|
|
df = DataFrame([[True]])
|
|
assert df.bool()
|
|
|
|
df = DataFrame([[False]])
|
|
assert not df.bool()
|
|
|
|
df = DataFrame([[False, False]])
|
|
msg = "The truth value of a DataFrame is ambiguous"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.bool()
|
|
with pytest.raises(ValueError, match=msg):
|
|
bool(df)
|
|
|
|
def test_get_numeric_data_preserve_dtype(self):
|
|
|
|
# get the numeric data
|
|
o = DataFrame({"A": [1, "2", 3.0]})
|
|
result = o._get_numeric_data()
|
|
expected = DataFrame(index=[0, 1, 2], dtype=object)
|
|
self._compare(result, expected)
|
|
|
|
def test_metadata_propagation_indiv(self):
|
|
|
|
# groupby
|
|
df = DataFrame(
|
|
{
|
|
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
|
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
|
"C": np.random.randn(8),
|
|
"D": np.random.randn(8),
|
|
}
|
|
)
|
|
result = df.groupby("A").sum()
|
|
self.check_metadata(df, result)
|
|
|
|
# resample
|
|
df = DataFrame(
|
|
np.random.randn(1000, 2),
|
|
index=date_range("20130101", periods=1000, freq="s"),
|
|
)
|
|
result = df.resample("1T")
|
|
self.check_metadata(df, result)
|
|
|
|
# merging with override
|
|
# GH 6923
|
|
_metadata = DataFrame._metadata
|
|
_finalize = DataFrame.__finalize__
|
|
|
|
np.random.seed(10)
|
|
df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=["a", "b"])
|
|
df2 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=["c", "d"])
|
|
DataFrame._metadata = ["filename"]
|
|
df1.filename = "fname1.csv"
|
|
df2.filename = "fname2.csv"
|
|
|
|
def finalize(self, other, method=None, **kwargs):
|
|
|
|
for name in self._metadata:
|
|
if method == "merge":
|
|
left, right = other.left, other.right
|
|
value = getattr(left, name, "") + "|" + getattr(right, name, "")
|
|
object.__setattr__(self, name, value)
|
|
else:
|
|
object.__setattr__(self, name, getattr(other, name, ""))
|
|
|
|
return self
|
|
|
|
DataFrame.__finalize__ = finalize
|
|
result = df1.merge(df2, left_on=["a"], right_on=["c"], how="inner")
|
|
assert result.filename == "fname1.csv|fname2.csv"
|
|
|
|
# concat
|
|
# GH 6927
|
|
DataFrame._metadata = ["filename"]
|
|
df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=list("ab"))
|
|
df1.filename = "foo"
|
|
|
|
def finalize(self, other, method=None, **kwargs):
|
|
for name in self._metadata:
|
|
if method == "concat":
|
|
value = "+".join(
|
|
[getattr(o, name) for o in other.objs if getattr(o, name, None)]
|
|
)
|
|
object.__setattr__(self, name, value)
|
|
else:
|
|
object.__setattr__(self, name, getattr(other, name, None))
|
|
|
|
return self
|
|
|
|
DataFrame.__finalize__ = finalize
|
|
|
|
result = pd.concat([df1, df1])
|
|
assert result.filename == "foo+foo"
|
|
|
|
# reset
|
|
DataFrame._metadata = _metadata
|
|
DataFrame.__finalize__ = _finalize # FIXME: use monkeypatch
|
|
|
|
def test_set_attribute(self):
|
|
# Test for consistent setattr behavior when an attribute and a column
|
|
# have the same name (Issue #8994)
|
|
df = DataFrame({"x": [1, 2, 3]})
|
|
|
|
df.y = 2
|
|
df["y"] = [2, 4, 6]
|
|
df.y = 5
|
|
|
|
assert df.y == 5
|
|
tm.assert_series_equal(df["y"], Series([2, 4, 6], name="y"))
|
|
|
|
def test_deepcopy_empty(self):
|
|
# This test covers empty frame copying with non-empty column sets
|
|
# as reported in issue GH15370
|
|
empty_frame = DataFrame(data=[], index=[], columns=["A"])
|
|
empty_frame_copy = deepcopy(empty_frame)
|
|
|
|
self._compare(empty_frame_copy, empty_frame)
|
|
|
|
|
|
# formerly in Generic but only test DataFrame
|
|
class TestDataFrame2:
|
|
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
|
|
def test_validate_bool_args(self, value):
|
|
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
|
|
|
msg = 'For argument "inplace" expected type bool, received type'
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).rename_axis(
|
|
mapper={"a": "x", "b": "y"}, axis=1, inplace=value
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).drop("a", axis=1, inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df)._consolidate(inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).fillna(value=0, inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).replace(to_replace=1, value=7, inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).interpolate(inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df)._where(cond=df.a > 2, inplace=value)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
super(DataFrame, df).mask(cond=df.a > 2, inplace=value)
|
|
|
|
def test_unexpected_keyword(self):
|
|
# GH8597
|
|
df = DataFrame(np.random.randn(5, 2), columns=["jim", "joe"])
|
|
ca = pd.Categorical([0, 0, 2, 2, 3, np.nan])
|
|
ts = df["joe"].copy()
|
|
ts[2] = np.nan
|
|
|
|
msg = "unexpected keyword"
|
|
with pytest.raises(TypeError, match=msg):
|
|
df.drop("joe", axis=1, in_place=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
df.reindex([1, 0], inplace=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
ca.fillna(0, inplace=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
ts.fillna(0, in_place=True)
|
|
|