Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.0 KiB
168 lines
6.0 KiB
"""
|
|
Tests for DataFrame timezone-related methods
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
import pytz
|
|
|
|
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series
|
|
import pandas._testing as tm
|
|
from pandas.core.indexes.datetimes import date_range
|
|
|
|
|
|
class TestDataFrameTimezones:
|
|
def test_frame_values_with_tz(self):
|
|
tz = "US/Central"
|
|
df = DataFrame({"A": date_range("2000", periods=4, tz=tz)})
|
|
result = df.values
|
|
expected = np.array(
|
|
[
|
|
[pd.Timestamp("2000-01-01", tz=tz)],
|
|
[pd.Timestamp("2000-01-02", tz=tz)],
|
|
[pd.Timestamp("2000-01-03", tz=tz)],
|
|
[pd.Timestamp("2000-01-04", tz=tz)],
|
|
]
|
|
)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# two columns, homogenous
|
|
|
|
df = df.assign(B=df.A)
|
|
result = df.values
|
|
expected = np.concatenate([expected, expected], axis=1)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# three columns, heterogeneous
|
|
est = "US/Eastern"
|
|
df = df.assign(C=df.A.dt.tz_convert(est))
|
|
|
|
new = np.array(
|
|
[
|
|
[pd.Timestamp("2000-01-01T01:00:00", tz=est)],
|
|
[pd.Timestamp("2000-01-02T01:00:00", tz=est)],
|
|
[pd.Timestamp("2000-01-03T01:00:00", tz=est)],
|
|
[pd.Timestamp("2000-01-04T01:00:00", tz=est)],
|
|
]
|
|
)
|
|
expected = np.concatenate([expected, new], axis=1)
|
|
result = df.values
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_frame_join_tzaware(self):
|
|
test1 = DataFrame(
|
|
np.zeros((6, 3)),
|
|
index=date_range(
|
|
"2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central"
|
|
),
|
|
)
|
|
test2 = DataFrame(
|
|
np.zeros((3, 3)),
|
|
index=date_range(
|
|
"2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"
|
|
),
|
|
columns=range(3, 6),
|
|
)
|
|
|
|
result = test1.join(test2, how="outer")
|
|
ex_index = test1.index.union(test2.index)
|
|
|
|
tm.assert_index_equal(result.index, ex_index)
|
|
assert result.index.tz.zone == "US/Central"
|
|
|
|
def test_frame_align_aware(self):
|
|
idx1 = date_range("2001", periods=5, freq="H", tz="US/Eastern")
|
|
idx2 = date_range("2001", periods=5, freq="2H", tz="US/Eastern")
|
|
df1 = DataFrame(np.random.randn(len(idx1), 3), idx1)
|
|
df2 = DataFrame(np.random.randn(len(idx2), 3), idx2)
|
|
new1, new2 = df1.align(df2)
|
|
assert df1.index.tz == new1.index.tz
|
|
assert df2.index.tz == new2.index.tz
|
|
|
|
# different timezones convert to UTC
|
|
|
|
# frame with frame
|
|
df1_central = df1.tz_convert("US/Central")
|
|
new1, new2 = df1.align(df1_central)
|
|
assert new1.index.tz == pytz.UTC
|
|
assert new2.index.tz == pytz.UTC
|
|
|
|
# frame with Series
|
|
new1, new2 = df1.align(df1_central[0], axis=0)
|
|
assert new1.index.tz == pytz.UTC
|
|
assert new2.index.tz == pytz.UTC
|
|
|
|
df1[0].align(df1_central, axis=0)
|
|
assert new1.index.tz == pytz.UTC
|
|
assert new2.index.tz == pytz.UTC
|
|
|
|
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
|
|
def test_frame_no_datetime64_dtype(self, tz):
|
|
# after GH#7822
|
|
# these retain the timezones on dict construction
|
|
dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
|
|
dr_tz = dr.tz_localize(tz)
|
|
df = DataFrame({"A": "foo", "B": dr_tz}, index=dr)
|
|
tz_expected = DatetimeTZDtype("ns", dr_tz.tzinfo)
|
|
assert df["B"].dtype == tz_expected
|
|
|
|
# GH#2810 (with timezones)
|
|
datetimes_naive = [ts.to_pydatetime() for ts in dr]
|
|
datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
|
|
df = DataFrame({"dr": dr})
|
|
df["dr_tz"] = dr_tz
|
|
df["datetimes_naive"] = datetimes_naive
|
|
df["datetimes_with_tz"] = datetimes_with_tz
|
|
result = df.dtypes
|
|
expected = Series(
|
|
[
|
|
np.dtype("datetime64[ns]"),
|
|
DatetimeTZDtype(tz=tz),
|
|
np.dtype("datetime64[ns]"),
|
|
DatetimeTZDtype(tz=tz),
|
|
],
|
|
index=["dr", "dr_tz", "datetimes_naive", "datetimes_with_tz"],
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
|
|
def test_frame_reset_index(self, tz):
|
|
dr = date_range("2012-06-02", periods=10, tz=tz)
|
|
df = DataFrame(np.random.randn(len(dr)), dr)
|
|
roundtripped = df.reset_index().set_index("index")
|
|
xp = df.index.tz
|
|
rs = roundtripped.index.tz
|
|
assert xp == rs
|
|
|
|
@pytest.mark.parametrize("tz", [None, "America/New_York"])
|
|
def test_boolean_compare_transpose_tzindex_with_dst(self, tz):
|
|
# GH 19970
|
|
idx = date_range("20161101", "20161130", freq="4H", tz=tz)
|
|
df = DataFrame({"a": range(len(idx)), "b": range(len(idx))}, index=idx)
|
|
result = df.T == df.T
|
|
expected = DataFrame(True, index=list("ab"), columns=idx)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("copy", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"method, tz", [["tz_localize", None], ["tz_convert", "Europe/Berlin"]]
|
|
)
|
|
def test_tz_localize_convert_copy_inplace_mutate(self, copy, method, tz):
|
|
# GH 6326
|
|
result = DataFrame(
|
|
np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz=tz)
|
|
)
|
|
getattr(result, method)("UTC", copy=copy)
|
|
expected = DataFrame(
|
|
np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz=tz)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture):
|
|
# GH 25843
|
|
tz = tz_aware_fixture
|
|
result = DataFrame({"d": [pd.Timestamp("2019", tz=tz)]}, dtype="datetime64[ns]")
|
|
expected = DataFrame({"d": [pd.Timestamp("2019")]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|