1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/frame/test_api.py

590 lines
19 KiB

from copy import deepcopy
import datetime
import inspect
import pydoc
import numpy as np
import pytest
from pandas.compat import PY37
from pandas.util._test_decorators import async_mark, skip_if_no
import pandas as pd
from pandas import Categorical, DataFrame, Series, compat, date_range, timedelta_range
import pandas._testing as tm
class TestDataFrameMisc:
@pytest.mark.parametrize("attr", ["index", "columns"])
def test_copy_index_name_checking(self, float_frame, attr):
# don't want to be able to modify the index stored elsewhere after
# making a copy
ind = getattr(float_frame, attr)
ind.name = None
cp = float_frame.copy()
getattr(cp, attr).name = "foo"
assert getattr(float_frame, attr).name is None
def test_getitem_pop_assign_name(self, float_frame):
s = float_frame["A"]
assert s.name == "A"
s = float_frame.pop("A")
assert s.name == "A"
s = float_frame.loc[:, "B"]
assert s.name == "B"
s2 = s.loc[:]
assert s2.name == "B"
def test_get_value(self, float_frame):
for idx in float_frame.index:
for col in float_frame.columns:
result = float_frame._get_value(idx, col)
expected = float_frame[col][idx]
tm.assert_almost_equal(result, expected)
def test_add_prefix_suffix(self, float_frame):
with_prefix = float_frame.add_prefix("foo#")
expected = pd.Index([f"foo#{c}" for c in float_frame.columns])
tm.assert_index_equal(with_prefix.columns, expected)
with_suffix = float_frame.add_suffix("#foo")
expected = pd.Index([f"{c}#foo" for c in float_frame.columns])
tm.assert_index_equal(with_suffix.columns, expected)
with_pct_prefix = float_frame.add_prefix("%")
expected = pd.Index([f"%{c}" for c in float_frame.columns])
tm.assert_index_equal(with_pct_prefix.columns, expected)
with_pct_suffix = float_frame.add_suffix("%")
expected = pd.Index([f"{c}%" for c in float_frame.columns])
tm.assert_index_equal(with_pct_suffix.columns, expected)
def test_get_axis(self, float_frame):
f = float_frame
assert f._get_axis_number(0) == 0
assert f._get_axis_number(1) == 1
assert f._get_axis_number("index") == 0
assert f._get_axis_number("rows") == 0
assert f._get_axis_number("columns") == 1
assert f._get_axis_name(0) == "index"
assert f._get_axis_name(1) == "columns"
assert f._get_axis_name("index") == "index"
assert f._get_axis_name("rows") == "index"
assert f._get_axis_name("columns") == "columns"
assert f._get_axis(0) is f.index
assert f._get_axis(1) is f.columns
with pytest.raises(ValueError, match="No axis named"):
f._get_axis_number(2)
with pytest.raises(ValueError, match="No axis.*foo"):
f._get_axis_name("foo")
with pytest.raises(ValueError, match="No axis.*None"):
f._get_axis_name(None)
with pytest.raises(ValueError, match="No axis named"):
f._get_axis_number(None)
def test_keys(self, float_frame):
getkeys = float_frame.keys
assert getkeys() is float_frame.columns
def test_column_contains_raises(self, float_frame):
with pytest.raises(TypeError, match="unhashable type: 'Index'"):
float_frame.columns in float_frame
def test_tab_completion(self):
# DataFrame whose columns are identifiers shall have them in __dir__.
df = pd.DataFrame([list("abcd"), list("efgh")], columns=list("ABCD"))
for key in list("ABCD"):
assert key in dir(df)
assert isinstance(df.__getitem__("A"), pd.Series)
# DataFrame whose first-level columns are identifiers shall have
# them in __dir__.
df = pd.DataFrame(
[list("abcd"), list("efgh")],
columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))),
)
for key in list("ABCD"):
assert key in dir(df)
for key in list("EFGH"):
assert key not in dir(df)
assert isinstance(df.__getitem__("A"), pd.DataFrame)
def test_not_hashable(self):
empty_frame = DataFrame()
df = DataFrame([1])
msg = "'DataFrame' objects are mutable, thus they cannot be hashed"
with pytest.raises(TypeError, match=msg):
hash(df)
with pytest.raises(TypeError, match=msg):
hash(empty_frame)
def test_column_name_contains_unicode_surrogate(self):
# GH 25509
colname = "\ud83d"
df = DataFrame({colname: []})
# this should not crash
assert colname not in dir(df)
assert df.columns[0] == colname
def test_new_empty_index(self):
df1 = DataFrame(np.random.randn(0, 3))
df2 = DataFrame(np.random.randn(0, 3))
df1.index.name = "foo"
assert df2.index.name is None
def test_array_interface(self, float_frame):
with np.errstate(all="ignore"):
result = np.sqrt(float_frame)
assert isinstance(result, type(float_frame))
assert result.index is float_frame.index
assert result.columns is float_frame.columns
tm.assert_frame_equal(result, float_frame.apply(np.sqrt))
def test_get_agg_axis(self, float_frame):
cols = float_frame._get_agg_axis(0)
assert cols is float_frame.columns
idx = float_frame._get_agg_axis(1)
assert idx is float_frame.index
msg = r"Axis must be 0 or 1 \(got 2\)"
with pytest.raises(ValueError, match=msg):
float_frame._get_agg_axis(2)
def test_nonzero(self, float_frame, float_string_frame):
empty_frame = DataFrame()
assert empty_frame.empty
assert not float_frame.empty
assert not float_string_frame.empty
# corner case
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3))
del df["A"]
assert not df.empty
def test_iteritems(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
for k, v in df.items():
assert isinstance(v, DataFrame._constructor_sliced)
def test_items(self):
# GH 17213, GH 13918
cols = ["a", "b", "c"]
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
for c, (k, v) in zip(cols, df.items()):
assert c == k
assert isinstance(v, Series)
assert (df[k] == v).all()
def test_iter(self, float_frame):
assert tm.equalContents(list(float_frame), float_frame.columns)
def test_iterrows(self, float_frame, float_string_frame):
for k, v in float_frame.iterrows():
exp = float_frame.loc[k]
tm.assert_series_equal(v, exp)
for k, v in float_string_frame.iterrows():
exp = float_string_frame.loc[k]
tm.assert_series_equal(v, exp)
def test_iterrows_iso8601(self):
# GH 19671
s = DataFrame(
{
"non_iso8601": ["M1701", "M1802", "M1903", "M2004"],
"iso8601": date_range("2000-01-01", periods=4, freq="M"),
}
)
for k, v in s.iterrows():
exp = s.loc[k]
tm.assert_series_equal(v, exp)
def test_iterrows_corner(self):
# gh-12222
df = DataFrame(
{
"a": [datetime.datetime(2015, 1, 1)],
"b": [None],
"c": [None],
"d": [""],
"e": [[]],
"f": [set()],
"g": [{}],
}
)
expected = Series(
[datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}],
index=list("abcdefg"),
name=0,
dtype="object",
)
_, result = next(df.iterrows())
tm.assert_series_equal(result, expected)
def test_itertuples(self, float_frame):
for i, tup in enumerate(float_frame.itertuples()):
s = DataFrame._constructor_sliced(tup[1:])
s.name = tup[0]
expected = float_frame.iloc[i, :].reset_index(drop=True)
tm.assert_series_equal(s, expected)
df = DataFrame(
{"floats": np.random.randn(5), "ints": range(5)}, columns=["floats", "ints"]
)
for tup in df.itertuples(index=False):
assert isinstance(tup[1], int)
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[["a", "a"]]
assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)]
# repr with int on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (
repr(list(df.itertuples(name=None)))
== "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]"
)
tup = next(df.itertuples(name="TestName"))
assert tup._fields == ("Index", "a", "b")
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == "TestName"
df.columns = ["def", "return"]
tup2 = next(df.itertuples(name="TestName"))
assert tup2 == (0, 1, 4)
assert tup2._fields == ("Index", "_1", "_2")
df3 = DataFrame({"f" + str(i): [i] for i in range(1024)})
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert isinstance(tup3, tuple)
if PY37:
assert hasattr(tup3, "_fields")
else:
assert not hasattr(tup3, "_fields")
# GH 28282
df_254_columns = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(254)}])
result_254_columns = next(df_254_columns.itertuples(index=False))
assert isinstance(result_254_columns, tuple)
assert hasattr(result_254_columns, "_fields")
df_255_columns = DataFrame([{f"foo_{i}": f"bar_{i}" for i in range(255)}])
result_255_columns = next(df_255_columns.itertuples(index=False))
assert isinstance(result_255_columns, tuple)
# Dataframes with >=255 columns will fallback to regular tuples on python < 3.7
if PY37:
assert hasattr(result_255_columns, "_fields")
else:
assert not hasattr(result_255_columns, "_fields")
def test_sequence_like_with_categorical(self):
# GH 7839
# make sure can iterate
df = DataFrame(
{"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}
)
df["grade"] = Categorical(df["raw_grade"])
# basic sequencing testing
result = list(df.grade.values)
expected = np.array(df.grade.values).tolist()
tm.assert_almost_equal(result, expected)
# iteration
for t in df.itertuples(index=False):
str(t)
for row, s in df.iterrows():
str(s)
for c, col in df.items():
str(s)
def test_len(self, float_frame):
assert len(float_frame) == len(float_frame.index)
def test_values_mixed_dtypes(self, float_frame, float_string_frame):
frame = float_frame
arr = frame.values
frame_cols = frame.columns
for i, row in enumerate(arr):
for j, value in enumerate(row):
col = frame_cols[j]
if np.isnan(value):
assert np.isnan(frame[col][i])
else:
assert value == frame[col][i]
# mixed type
arr = float_string_frame[["foo", "A"]].values
assert arr[0, 0] == "bar"
df = DataFrame({"complex": [1j, 2j, 3j], "real": [1, 2, 3]})
arr = df.values
assert arr[0, 0] == 1j
# single block corner case
arr = float_frame[["A", "B"]].values
expected = float_frame.reindex(columns=["A", "B"]).values
tm.assert_almost_equal(arr, expected)
def test_to_numpy(self):
df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
expected = np.array([[1, 3], [2, 4.5]])
result = df.to_numpy()
tm.assert_numpy_array_equal(result, expected)
def test_to_numpy_dtype(self):
df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
expected = np.array([[1, 3], [2, 4]], dtype="int64")
result = df.to_numpy(dtype="int64")
tm.assert_numpy_array_equal(result, expected)
def test_to_numpy_copy(self):
arr = np.random.randn(4, 3)
df = pd.DataFrame(arr)
assert df.values.base is arr
assert df.to_numpy(copy=False).base is arr
assert df.to_numpy(copy=True).base is not arr
def test_to_numpy_mixed_dtype_to_str(self):
# https://github.com/pandas-dev/pandas/issues/35455
df = pd.DataFrame([[pd.Timestamp("2020-01-01 00:00:00"), 100.0]])
result = df.to_numpy(dtype=str)
expected = np.array([["2020-01-01 00:00:00", "100.0"]], dtype=str)
tm.assert_numpy_array_equal(result, expected)
def test_swapaxes(self):
df = DataFrame(np.random.randn(10, 5))
tm.assert_frame_equal(df.T, df.swapaxes(0, 1))
tm.assert_frame_equal(df.T, df.swapaxes(1, 0))
tm.assert_frame_equal(df, df.swapaxes(0, 0))
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.swapaxes(2, 5)
def test_axis_aliases(self, float_frame):
f = float_frame
# reg name
expected = f.sum(axis=0)
result = f.sum(axis="index")
tm.assert_series_equal(result, expected)
expected = f.sum(axis=1)
result = f.sum(axis="columns")
tm.assert_series_equal(result, expected)
def test_class_axis(self):
# GH 18147
# no exception and no empty docstring
assert pydoc.getdoc(DataFrame.index)
assert pydoc.getdoc(DataFrame.columns)
def test_more_values(self, float_string_frame):
values = float_string_frame.values
assert values.shape[1] == len(float_string_frame.columns)
def test_repr_with_mi_nat(self, float_string_frame):
df = DataFrame(
{"X": [1, 2]}, index=[[pd.NaT, pd.Timestamp("20130101")], ["a", "b"]]
)
result = repr(df)
expected = " X\nNaT a 1\n2013-01-01 b 2"
assert result == expected
def test_items_names(self, float_string_frame):
for k, v in float_string_frame.items():
assert v.name == k
def test_series_put_names(self, float_string_frame):
series = float_string_frame._series
for k, v in series.items():
assert v.name == k
def test_empty_nonzero(self):
df = DataFrame([1, 2, 3])
assert not df.empty
df = DataFrame(index=[1], columns=[1])
assert not df.empty
df = DataFrame(index=["a", "b"], columns=["c", "d"]).dropna()
assert df.empty
assert df.T.empty
empty_frames = [
DataFrame(),
DataFrame(index=[1]),
DataFrame(columns=[1]),
DataFrame({1: []}),
]
for df in empty_frames:
assert df.empty
assert df.T.empty
def test_with_datetimelikes(self):
df = DataFrame(
{
"A": date_range("20130101", periods=10),
"B": timedelta_range("1 day", periods=10),
}
)
t = df.T
result = t.dtypes.value_counts()
expected = Series({np.dtype("object"): 10})
tm.assert_series_equal(result, expected)
def test_values(self, float_frame):
float_frame.values[:, 0] = 5.0
assert (float_frame.values[:, 0] == 5).all()
def test_deepcopy(self, float_frame):
cp = deepcopy(float_frame)
series = cp["A"]
series[:] = 10
for idx, value in series.items():
assert float_frame["A"][idx] != value
def test_inplace_return_self(self):
# GH 1893
data = DataFrame(
{"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]}
)
def _check_f(base, f):
result = f(base)
assert result is None
# -----DataFrame-----
# set_index
f = lambda x: x.set_index("a", inplace=True)
_check_f(data.copy(), f)
# reset_index
f = lambda x: x.reset_index(inplace=True)
_check_f(data.set_index("a"), f)
# drop_duplicates
f = lambda x: x.drop_duplicates(inplace=True)
_check_f(data.copy(), f)
# sort
f = lambda x: x.sort_values("b", inplace=True)
_check_f(data.copy(), f)
# sort_index
f = lambda x: x.sort_index(inplace=True)
_check_f(data.copy(), f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(data.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(data.copy(), f)
# rename
f = lambda x: x.rename({1: "foo"}, inplace=True)
_check_f(data.copy(), f)
# -----Series-----
d = data.copy()["c"]
# reset_index
f = lambda x: x.reset_index(inplace=True, drop=True)
_check_f(data.set_index("a")["c"], f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(d.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(d.copy(), f)
# rename
f = lambda x: x.rename({1: "foo"}, inplace=True)
_check_f(d.copy(), f)
@async_mark()
async def test_tab_complete_warning(self, ip):
# GH 16409
pytest.importorskip("IPython", minversion="6.0.0")
from IPython.core.completer import provisionalcompleter
code = "import pandas as pd; df = pd.DataFrame()"
await ip.run_code(code)
# TODO: remove it when Ipython updates
# GH 33567, jedi version raises Deprecation warning in Ipython
import jedi
if jedi.__version__ < "0.17.0":
warning = tm.assert_produces_warning(None)
else:
warning = tm.assert_produces_warning(
DeprecationWarning, check_stacklevel=False
)
with warning:
with provisionalcompleter("ignore"):
list(ip.Completer.completions("df.", 1))
def test_attrs(self):
df = pd.DataFrame({"A": [2, 3]})
assert df.attrs == {}
df.attrs["version"] = 1
result = df.rename(columns=str)
assert result.attrs == {"version": 1}
def test_cache_on_copy(self):
# GH 31784 _item_cache not cleared on copy causes incorrect reads after updates
df = DataFrame({"a": [1]})
df["x"] = [0]
df["a"]
df.copy()
df["a"].values[0] = -1
tm.assert_frame_equal(df, DataFrame({"a": [-1], "x": [0]}))
df["y"] = [0]
assert df["a"].values[0] == -1
tm.assert_frame_equal(df, DataFrame({"a": [-1], "x": [0], "y": [0]}))
@skip_if_no("jinja2")
def test_constructor_expanddim_lookup(self):
# GH#33628 accessing _constructor_expanddim should not
# raise NotImplementedError
df = DataFrame()
inspect.getmembers(df)
with pytest.raises(NotImplementedError, match="Not supported for DataFrames!"):
df._constructor_expanddim(np.arange(27).reshape(3, 3, 3))