1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/base/test_conversion.py

454 lines
14 KiB

import numpy as np
import pytest
from pandas.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype
from pandas.core.dtypes.dtypes import DatetimeTZDtype
import pandas as pd
from pandas import CategoricalIndex, Series, Timedelta, Timestamp
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
IntervalArray,
PandasArray,
PeriodArray,
SparseArray,
TimedeltaArray,
)
class TestToIterable:
# test that we convert an iterable to python types
dtypes = [
("int8", int),
("int16", int),
("int32", int),
("int64", int),
("uint8", int),
("uint16", int),
("uint32", int),
("uint64", int),
("float16", float),
("float32", float),
("float64", float),
("datetime64[ns]", Timestamp),
("datetime64[ns, US/Eastern]", Timestamp),
("timedelta64[ns]", Timedelta),
]
@pytest.mark.parametrize("dtype, rdtype", dtypes)
@pytest.mark.parametrize(
"method",
[
lambda x: x.tolist(),
lambda x: x.to_list(),
lambda x: list(x),
lambda x: list(x.__iter__()),
],
ids=["tolist", "to_list", "list", "iter"],
)
def test_iterable(self, index_or_series, method, dtype, rdtype):
# gh-10904
# gh-13258
# coerce iteration to underlying python / pandas types
typ = index_or_series
s = typ([1], dtype=dtype)
result = method(s)[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize(
"dtype, rdtype, obj",
[
("object", object, "a"),
("object", int, 1),
("category", object, "a"),
("category", int, 1),
],
)
@pytest.mark.parametrize(
"method",
[
lambda x: x.tolist(),
lambda x: x.to_list(),
lambda x: list(x),
lambda x: list(x.__iter__()),
],
ids=["tolist", "to_list", "list", "iter"],
)
def test_iterable_object_and_category(
self, index_or_series, method, dtype, rdtype, obj
):
# gh-10904
# gh-13258
# coerce iteration to underlying python / pandas types
typ = index_or_series
s = typ([obj], dtype=dtype)
result = method(s)[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize("dtype, rdtype", dtypes)
def test_iterable_items(self, dtype, rdtype):
# gh-13258
# test if items yields the correct boxed scalars
# this only applies to series
s = Series([1], dtype=dtype)
_, result = list(s.items())[0]
assert isinstance(result, rdtype)
_, result = list(s.items())[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize(
"dtype, rdtype", dtypes + [("object", int), ("category", int)]
)
def test_iterable_map(self, index_or_series, dtype, rdtype):
# gh-13236
# coerce iteration to underlying python / pandas types
typ = index_or_series
s = typ([1], dtype=dtype)
result = s.map(type)[0]
if not isinstance(rdtype, tuple):
rdtype = tuple([rdtype])
assert result in rdtype
@pytest.mark.parametrize(
"method",
[
lambda x: x.tolist(),
lambda x: x.to_list(),
lambda x: list(x),
lambda x: list(x.__iter__()),
],
ids=["tolist", "to_list", "list", "iter"],
)
def test_categorial_datetimelike(self, method):
i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")])
result = method(i)[0]
assert isinstance(result, Timestamp)
def test_iter_box(self):
vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")]
s = Series(vals)
assert s.dtype == "datetime64[ns]"
for res, exp in zip(s, vals):
assert isinstance(res, Timestamp)
assert res.tz is None
assert res == exp
vals = [
Timestamp("2011-01-01", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern"),
]
s = Series(vals)
assert s.dtype == "datetime64[ns, US/Eastern]"
for res, exp in zip(s, vals):
assert isinstance(res, Timestamp)
assert res.tz == exp.tz
assert res == exp
# timedelta
vals = [Timedelta("1 days"), Timedelta("2 days")]
s = Series(vals)
assert s.dtype == "timedelta64[ns]"
for res, exp in zip(s, vals):
assert isinstance(res, Timedelta)
assert res == exp
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
s = Series(vals)
assert s.dtype == "Period[M]"
for res, exp in zip(s, vals):
assert isinstance(res, pd.Period)
assert res.freq == "M"
assert res == exp
@pytest.mark.parametrize(
"array, expected_type, dtype",
[
(np.array([0, 1], dtype=np.int64), np.ndarray, "int64"),
(np.array(["a", "b"]), np.ndarray, "object"),
(pd.Categorical(["a", "b"]), pd.Categorical, "category"),
(
pd.DatetimeIndex(["2017", "2018"], tz="US/Central"),
DatetimeArray,
"datetime64[ns, US/Central]",
),
(
pd.PeriodIndex([2018, 2019], freq="A"),
PeriodArray,
pd.core.dtypes.dtypes.PeriodDtype("A-DEC"),
),
(pd.IntervalIndex.from_breaks([0, 1, 2]), IntervalArray, "interval",),
# This test is currently failing for datetime64[ns] and timedelta64[ns].
# The NumPy type system is sufficient for representing these types, so
# we just use NumPy for Series / DataFrame columns of these types (so
# we get consolidation and so on).
# However, DatetimeIndex and TimedeltaIndex use the DateLikeArray
# abstraction to for code reuse.
# At the moment, we've judged that allowing this test to fail is more
# practical that overriding Series._values to special case
# Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray.
pytest.param(
pd.DatetimeIndex(["2017", "2018"]),
np.ndarray,
"datetime64[ns]",
marks=[pytest.mark.xfail(reason="datetime _values", strict=True)],
),
pytest.param(
pd.TimedeltaIndex([10 ** 10]),
np.ndarray,
"m8[ns]",
marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)],
),
],
)
def test_values_consistent(array, expected_type, dtype):
l_values = pd.Series(array)._values
r_values = pd.Index(array)._values
assert type(l_values) is expected_type
assert type(l_values) is type(r_values)
tm.assert_equal(l_values, r_values)
@pytest.mark.parametrize("arr", [np.array([1, 2, 3])])
def test_numpy_array(arr):
ser = pd.Series(arr)
result = ser.array
expected = PandasArray(arr)
tm.assert_extension_array_equal(result, expected)
def test_numpy_array_all_dtypes(any_numpy_dtype):
ser = pd.Series(dtype=any_numpy_dtype)
result = ser.array
if is_datetime64_dtype(any_numpy_dtype):
assert isinstance(result, DatetimeArray)
elif is_timedelta64_dtype(any_numpy_dtype):
assert isinstance(result, TimedeltaArray)
else:
assert isinstance(result, PandasArray)
@pytest.mark.parametrize(
"array, attr",
[
(pd.Categorical(["a", "b"]), "_codes"),
(pd.core.arrays.period_array(["2000", "2001"], freq="D"), "_data"),
(pd.core.arrays.integer_array([0, np.nan]), "_data"),
(IntervalArray.from_breaks([0, 1]), "_left"),
(SparseArray([0, 1]), "_sparse_values"),
(DatetimeArray(np.array([1, 2], dtype="datetime64[ns]")), "_data"),
# tz-aware Datetime
(
DatetimeArray(
np.array(
["2000-01-01T12:00:00", "2000-01-02T12:00:00"], dtype="M8[ns]"
),
dtype=DatetimeTZDtype(tz="US/Central"),
),
"_data",
),
],
)
def test_array(array, attr, index_or_series):
box = index_or_series
if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index:
pytest.skip(f"No index type for {array.dtype}")
result = box(array, copy=False).array
if attr:
array = getattr(array, attr)
result = getattr(result, attr)
assert result is array
def test_array_multiindex_raises():
idx = pd.MultiIndex.from_product([["A"], ["a", "b"]])
msg = "MultiIndex has no single backing array"
with pytest.raises(ValueError, match=msg):
idx.array
@pytest.mark.parametrize(
"array, expected",
[
(np.array([1, 2], dtype=np.int64), np.array([1, 2], dtype=np.int64)),
(pd.Categorical(["a", "b"]), np.array(["a", "b"], dtype=object)),
(
pd.core.arrays.period_array(["2000", "2001"], freq="D"),
np.array([pd.Period("2000", freq="D"), pd.Period("2001", freq="D")]),
),
(
pd.core.arrays.integer_array([0, np.nan]),
np.array([0, pd.NA], dtype=object),
),
(
IntervalArray.from_breaks([0, 1, 2]),
np.array([pd.Interval(0, 1), pd.Interval(1, 2)], dtype=object),
),
(SparseArray([0, 1]), np.array([0, 1], dtype=np.int64)),
# tz-naive datetime
(
DatetimeArray(np.array(["2000", "2001"], dtype="M8[ns]")),
np.array(["2000", "2001"], dtype="M8[ns]"),
),
# tz-aware stays tz`-aware
(
DatetimeArray(
np.array(
["2000-01-01T06:00:00", "2000-01-02T06:00:00"], dtype="M8[ns]"
),
dtype=DatetimeTZDtype(tz="US/Central"),
),
np.array(
[
pd.Timestamp("2000-01-01", tz="US/Central"),
pd.Timestamp("2000-01-02", tz="US/Central"),
]
),
),
# Timedelta
(
TimedeltaArray(np.array([0, 3600000000000], dtype="i8"), freq="H"),
np.array([0, 3600000000000], dtype="m8[ns]"),
),
],
)
def test_to_numpy(array, expected, index_or_series):
box = index_or_series
thing = box(array)
if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index:
pytest.skip(f"No index type for {array.dtype}")
result = thing.to_numpy()
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("as_series", [True, False])
@pytest.mark.parametrize(
"arr", [np.array([1, 2, 3], dtype="int64"), np.array(["a", "b", "c"], dtype=object)]
)
def test_to_numpy_copy(arr, as_series):
obj = pd.Index(arr, copy=False)
if as_series:
obj = pd.Series(obj.values, copy=False)
# no copy by default
result = obj.to_numpy()
assert np.shares_memory(arr, result) is True
result = obj.to_numpy(copy=False)
assert np.shares_memory(arr, result) is True
# copy=True
result = obj.to_numpy(copy=True)
assert np.shares_memory(arr, result) is False
@pytest.mark.parametrize("as_series", [True, False])
def test_to_numpy_dtype(as_series):
tz = "US/Eastern"
obj = pd.DatetimeIndex(["2000", "2001"], tz=tz)
if as_series:
obj = pd.Series(obj)
# preserve tz by default
result = obj.to_numpy()
expected = np.array(
[pd.Timestamp("2000", tz=tz), pd.Timestamp("2001", tz=tz)], dtype=object
)
tm.assert_numpy_array_equal(result, expected)
result = obj.to_numpy(dtype="object")
tm.assert_numpy_array_equal(result, expected)
result = obj.to_numpy(dtype="M8[ns]")
expected = np.array(["2000-01-01T05", "2001-01-01T05"], dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"values, dtype, na_value, expected",
[
([1, 2, None], "float64", 0, [1.0, 2.0, 0.0]),
(
[pd.Timestamp("2000"), pd.Timestamp("2000"), pd.NaT],
None,
pd.Timestamp("2000"),
[np.datetime64("2000-01-01T00:00:00.000000000")] * 3,
),
],
)
def test_to_numpy_na_value_numpy_dtype(
index_or_series, values, dtype, na_value, expected
):
obj = index_or_series(values)
result = obj.to_numpy(dtype=dtype, na_value=na_value)
expected = np.array(expected)
tm.assert_numpy_array_equal(result, expected)
def test_to_numpy_kwargs_raises():
# numpy
s = pd.Series([1, 2, 3])
msg = r"to_numpy\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
s.to_numpy(foo=True)
# extension
s = pd.Series([1, 2, 3], dtype="Int64")
with pytest.raises(TypeError, match=msg):
s.to_numpy(foo=True)
@pytest.mark.parametrize(
"data",
[
{"a": [1, 2, 3], "b": [1, 2, None]},
{"a": np.array([1, 2, 3]), "b": np.array([1, 2, np.nan])},
{"a": pd.array([1, 2, 3]), "b": pd.array([1, 2, None])},
],
)
@pytest.mark.parametrize("dtype, na_value", [(float, np.nan), (object, None)])
def test_to_numpy_dataframe_na_value(data, dtype, na_value):
# https://github.com/pandas-dev/pandas/issues/33820
df = pd.DataFrame(data)
result = df.to_numpy(dtype=dtype, na_value=na_value)
expected = np.array([[1, 1], [2, 2], [3, na_value]], dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"data, expected",
[
(
{"a": pd.array([1, 2, None])},
np.array([[1.0], [2.0], [np.nan]], dtype=float),
),
(
{"a": [1, 2, 3], "b": [1, 2, 3]},
np.array([[1, 1], [2, 2], [3, 3]], dtype=float),
),
],
)
def test_to_numpy_dataframe_single_block(data, expected):
# https://github.com/pandas-dev/pandas/issues/33820
df = pd.DataFrame(data)
result = df.to_numpy(dtype=float, na_value=np.nan)
tm.assert_numpy_array_equal(result, expected)
def test_to_numpy_dataframe_single_block_no_mutate():
# https://github.com/pandas-dev/pandas/issues/33820
result = pd.DataFrame(np.array([1.0, 2.0, np.nan]))
expected = pd.DataFrame(np.array([1.0, 2.0, np.nan]))
result.to_numpy(na_value=0.0)
tm.assert_frame_equal(result, expected)