Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
6.4 KiB
250 lines
6.4 KiB
"""
|
|
Additional tests for PandasArray that aren't covered by
|
|
the interface tests.
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.arrays import PandasArray
|
|
from pandas.core.arrays.numpy_ import PandasDtype
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
np.array(["a", "b"], dtype=object),
|
|
np.array([0, 1], dtype=float),
|
|
np.array([0, 1], dtype=int),
|
|
np.array([0, 1 + 2j], dtype=complex),
|
|
np.array([True, False], dtype=bool),
|
|
np.array([0, 1], dtype="datetime64[ns]"),
|
|
np.array([0, 1], dtype="timedelta64[ns]"),
|
|
]
|
|
)
|
|
def any_numpy_array(request):
|
|
"""
|
|
Parametrized fixture for NumPy arrays with different dtypes.
|
|
|
|
This excludes string and bytes.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# PandasDtype
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, expected",
|
|
[
|
|
("bool", True),
|
|
("int", True),
|
|
("uint", True),
|
|
("float", True),
|
|
("complex", True),
|
|
("str", False),
|
|
("bytes", False),
|
|
("datetime64[ns]", False),
|
|
("object", False),
|
|
("void", False),
|
|
],
|
|
)
|
|
def test_is_numeric(dtype, expected):
|
|
dtype = PandasDtype(dtype)
|
|
assert dtype._is_numeric is expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, expected",
|
|
[
|
|
("bool", True),
|
|
("int", False),
|
|
("uint", False),
|
|
("float", False),
|
|
("complex", False),
|
|
("str", False),
|
|
("bytes", False),
|
|
("datetime64[ns]", False),
|
|
("object", False),
|
|
("void", False),
|
|
],
|
|
)
|
|
def test_is_boolean(dtype, expected):
|
|
dtype = PandasDtype(dtype)
|
|
assert dtype._is_boolean is expected
|
|
|
|
|
|
def test_repr():
|
|
dtype = PandasDtype(np.dtype("int64"))
|
|
assert repr(dtype) == "PandasDtype('int64')"
|
|
|
|
|
|
def test_constructor_from_string():
|
|
result = PandasDtype.construct_from_string("int64")
|
|
expected = PandasDtype(np.dtype("int64"))
|
|
assert result == expected
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# Construction
|
|
|
|
|
|
def test_constructor_no_coercion():
|
|
with pytest.raises(ValueError, match="NumPy array"):
|
|
PandasArray([1, 2, 3])
|
|
|
|
|
|
def test_series_constructor_with_copy():
|
|
ndarray = np.array([1, 2, 3])
|
|
ser = pd.Series(PandasArray(ndarray), copy=True)
|
|
|
|
assert ser.values is not ndarray
|
|
|
|
|
|
def test_series_constructor_with_astype():
|
|
ndarray = np.array([1, 2, 3])
|
|
result = pd.Series(PandasArray(ndarray), dtype="float64")
|
|
expected = pd.Series([1.0, 2.0, 3.0], dtype="float64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_from_sequence_dtype():
|
|
arr = np.array([1, 2, 3], dtype="int64")
|
|
result = PandasArray._from_sequence(arr, dtype="uint64")
|
|
expected = PandasArray(np.array([1, 2, 3], dtype="uint64"))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_constructor_copy():
|
|
arr = np.array([0, 1])
|
|
result = PandasArray(arr, copy=True)
|
|
|
|
assert np.shares_memory(result._ndarray, arr) is False
|
|
|
|
|
|
def test_constructor_with_data(any_numpy_array):
|
|
nparr = any_numpy_array
|
|
arr = PandasArray(nparr)
|
|
assert arr.dtype.numpy_dtype == nparr.dtype
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# Conversion
|
|
|
|
|
|
def test_to_numpy():
|
|
arr = PandasArray(np.array([1, 2, 3]))
|
|
result = arr.to_numpy()
|
|
assert result is arr._ndarray
|
|
|
|
result = arr.to_numpy(copy=True)
|
|
assert result is not arr._ndarray
|
|
|
|
result = arr.to_numpy(dtype="f8")
|
|
expected = np.array([1, 2, 3], dtype="f8")
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# Setitem
|
|
|
|
|
|
def test_setitem_series():
|
|
ser = pd.Series([1, 2, 3])
|
|
ser.array[0] = 10
|
|
expected = pd.Series([10, 2, 3])
|
|
tm.assert_series_equal(ser, expected)
|
|
|
|
|
|
def test_setitem(any_numpy_array):
|
|
nparr = any_numpy_array
|
|
arr = PandasArray(nparr, copy=True)
|
|
|
|
arr[0] = arr[1]
|
|
nparr[0] = nparr[1]
|
|
|
|
tm.assert_numpy_array_equal(arr.to_numpy(), nparr)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# Reductions
|
|
|
|
|
|
def test_bad_reduce_raises():
|
|
arr = np.array([1, 2, 3], dtype="int64")
|
|
arr = PandasArray(arr)
|
|
msg = "cannot perform not_a_method with type int"
|
|
with pytest.raises(TypeError, match=msg):
|
|
arr._reduce(msg)
|
|
|
|
|
|
def test_validate_reduction_keyword_args():
|
|
arr = PandasArray(np.array([1, 2, 3]))
|
|
msg = "the 'keepdims' parameter is not supported .*all"
|
|
with pytest.raises(ValueError, match=msg):
|
|
arr.all(keepdims=True)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# Ops
|
|
|
|
|
|
def test_ufunc():
|
|
arr = PandasArray(np.array([-1.0, 0.0, 1.0]))
|
|
result = np.abs(arr)
|
|
expected = PandasArray(np.abs(arr._ndarray))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
r1, r2 = np.divmod(arr, np.add(arr, 2))
|
|
e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
|
|
e1 = PandasArray(e1)
|
|
e2 = PandasArray(e2)
|
|
tm.assert_extension_array_equal(r1, e1)
|
|
tm.assert_extension_array_equal(r2, e2)
|
|
|
|
|
|
def test_basic_binop():
|
|
# Just a basic smoke test. The EA interface tests exercise this
|
|
# more thoroughly.
|
|
x = PandasArray(np.array([1, 2, 3]))
|
|
result = x + x
|
|
expected = PandasArray(np.array([2, 4, 6]))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [None, object])
|
|
def test_setitem_object_typecode(dtype):
|
|
arr = PandasArray(np.array(["a", "b", "c"], dtype=dtype))
|
|
arr[0] = "t"
|
|
expected = PandasArray(np.array(["t", "b", "c"], dtype=dtype))
|
|
tm.assert_extension_array_equal(arr, expected)
|
|
|
|
|
|
def test_setitem_no_coercion():
|
|
# https://github.com/pandas-dev/pandas/issues/28150
|
|
arr = PandasArray(np.array([1, 2, 3]))
|
|
with pytest.raises(ValueError, match="int"):
|
|
arr[0] = "a"
|
|
|
|
# With a value that we do coerce, check that we coerce the value
|
|
# and not the underlying array.
|
|
arr[0] = 2.5
|
|
assert isinstance(arr[0], (int, np.integer)), type(arr[0])
|
|
|
|
|
|
def test_setitem_preserves_views():
|
|
# GH#28150, see also extension test of the same name
|
|
arr = PandasArray(np.array([1, 2, 3]))
|
|
view1 = arr.view()
|
|
view2 = arr[:]
|
|
view3 = np.asarray(arr)
|
|
|
|
arr[0] = 9
|
|
assert view1[0] == 9
|
|
assert view2[0] == 9
|
|
assert view3[0] == 9
|
|
|
|
arr[-1] = 2.5
|
|
view1[-1] = 5
|
|
assert arr[-1] == 5
|
|
|