Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
8.3 KiB
331 lines
8.3 KiB
import subprocess
|
|
import sys
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import api, compat
|
|
import pandas._testing as tm
|
|
|
|
|
|
class Base:
|
|
def check(self, namespace, expected, ignored=None):
|
|
# see which names are in the namespace, minus optional
|
|
# ignored ones
|
|
# compare vs the expected
|
|
|
|
result = sorted(f for f in dir(namespace) if not f.startswith("__"))
|
|
if ignored is not None:
|
|
result = sorted(set(result) - set(ignored))
|
|
|
|
expected = sorted(expected)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
|
|
class TestPDApi(Base):
|
|
# these are optionally imported based on testing
|
|
# & need to be ignored
|
|
ignored = ["tests", "locale", "conftest"]
|
|
|
|
# top-level sub-packages
|
|
lib = [
|
|
"api",
|
|
"arrays",
|
|
"compat",
|
|
"core",
|
|
"errors",
|
|
"pandas",
|
|
"plotting",
|
|
"test",
|
|
"testing",
|
|
"tseries",
|
|
"util",
|
|
"options",
|
|
"io",
|
|
]
|
|
|
|
# these are already deprecated; awaiting removal
|
|
deprecated_modules: List[str] = ["np", "datetime"]
|
|
|
|
# misc
|
|
misc = ["IndexSlice", "NaT", "NA"]
|
|
|
|
# top-level classes
|
|
classes = [
|
|
"Categorical",
|
|
"CategoricalIndex",
|
|
"DataFrame",
|
|
"DateOffset",
|
|
"DatetimeIndex",
|
|
"ExcelFile",
|
|
"ExcelWriter",
|
|
"Float64Index",
|
|
"Grouper",
|
|
"HDFStore",
|
|
"Index",
|
|
"Int64Index",
|
|
"MultiIndex",
|
|
"Period",
|
|
"PeriodIndex",
|
|
"RangeIndex",
|
|
"UInt64Index",
|
|
"Series",
|
|
"SparseDtype",
|
|
"StringDtype",
|
|
"Timedelta",
|
|
"TimedeltaIndex",
|
|
"Timestamp",
|
|
"Interval",
|
|
"IntervalIndex",
|
|
"CategoricalDtype",
|
|
"PeriodDtype",
|
|
"IntervalDtype",
|
|
"DatetimeTZDtype",
|
|
"BooleanDtype",
|
|
"Int8Dtype",
|
|
"Int16Dtype",
|
|
"Int32Dtype",
|
|
"Int64Dtype",
|
|
"UInt8Dtype",
|
|
"UInt16Dtype",
|
|
"UInt32Dtype",
|
|
"UInt64Dtype",
|
|
"NamedAgg",
|
|
]
|
|
|
|
# these are already deprecated; awaiting removal
|
|
deprecated_classes: List[str] = []
|
|
|
|
# these should be deprecated in the future
|
|
deprecated_classes_in_future: List[str] = ["SparseArray"]
|
|
|
|
if not compat.PY37:
|
|
classes.extend(["Panel", "SparseSeries", "SparseDataFrame"])
|
|
# deprecated_modules.extend(["np", "datetime"])
|
|
# deprecated_classes_in_future.extend(["SparseArray"])
|
|
|
|
# external modules exposed in pandas namespace
|
|
modules: List[str] = []
|
|
|
|
# top-level functions
|
|
funcs = [
|
|
"array",
|
|
"bdate_range",
|
|
"concat",
|
|
"crosstab",
|
|
"cut",
|
|
"date_range",
|
|
"interval_range",
|
|
"eval",
|
|
"factorize",
|
|
"get_dummies",
|
|
"infer_freq",
|
|
"isna",
|
|
"isnull",
|
|
"lreshape",
|
|
"melt",
|
|
"notna",
|
|
"notnull",
|
|
"offsets",
|
|
"merge",
|
|
"merge_ordered",
|
|
"merge_asof",
|
|
"period_range",
|
|
"pivot",
|
|
"pivot_table",
|
|
"qcut",
|
|
"show_versions",
|
|
"timedelta_range",
|
|
"unique",
|
|
"value_counts",
|
|
"wide_to_long",
|
|
]
|
|
|
|
# top-level option funcs
|
|
funcs_option = [
|
|
"reset_option",
|
|
"describe_option",
|
|
"get_option",
|
|
"option_context",
|
|
"set_option",
|
|
"set_eng_float_format",
|
|
]
|
|
|
|
# top-level read_* funcs
|
|
funcs_read = [
|
|
"read_clipboard",
|
|
"read_csv",
|
|
"read_excel",
|
|
"read_fwf",
|
|
"read_gbq",
|
|
"read_hdf",
|
|
"read_html",
|
|
"read_json",
|
|
"read_pickle",
|
|
"read_sas",
|
|
"read_sql",
|
|
"read_sql_query",
|
|
"read_sql_table",
|
|
"read_stata",
|
|
"read_table",
|
|
"read_feather",
|
|
"read_parquet",
|
|
"read_orc",
|
|
"read_spss",
|
|
]
|
|
|
|
# top-level json funcs
|
|
funcs_json = ["json_normalize"]
|
|
|
|
# top-level to_* funcs
|
|
funcs_to = ["to_datetime", "to_numeric", "to_pickle", "to_timedelta"]
|
|
|
|
# top-level to deprecate in the future
|
|
deprecated_funcs_in_future: List[str] = []
|
|
|
|
# these are already deprecated; awaiting removal
|
|
deprecated_funcs: List[str] = []
|
|
|
|
# private modules in pandas namespace
|
|
private_modules = [
|
|
"_config",
|
|
"_hashtable",
|
|
"_lib",
|
|
"_libs",
|
|
"_np_version_under1p16",
|
|
"_np_version_under1p17",
|
|
"_np_version_under1p18",
|
|
"_is_numpy_dev",
|
|
"_testing",
|
|
"_tslib",
|
|
"_typing",
|
|
"_version",
|
|
]
|
|
|
|
def test_api(self):
|
|
|
|
checkthese = (
|
|
self.lib
|
|
+ self.misc
|
|
+ self.modules
|
|
+ self.classes
|
|
+ self.funcs
|
|
+ self.funcs_option
|
|
+ self.funcs_read
|
|
+ self.funcs_json
|
|
+ self.funcs_to
|
|
+ self.private_modules
|
|
)
|
|
if not compat.PY37:
|
|
checkthese.extend(
|
|
self.deprecated_modules
|
|
+ self.deprecated_classes
|
|
+ self.deprecated_classes_in_future
|
|
+ self.deprecated_funcs_in_future
|
|
+ self.deprecated_funcs
|
|
)
|
|
self.check(pd, checkthese, self.ignored)
|
|
|
|
def test_depr(self):
|
|
deprecated_list = (
|
|
self.deprecated_modules
|
|
+ self.deprecated_classes
|
|
+ self.deprecated_classes_in_future
|
|
+ self.deprecated_funcs
|
|
+ self.deprecated_funcs_in_future
|
|
)
|
|
for depr in deprecated_list:
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
deprecated = getattr(pd, depr)
|
|
if not compat.PY37:
|
|
if depr == "datetime":
|
|
deprecated.__getattr__(dir(pd.datetime.datetime)[-1])
|
|
elif depr == "SparseArray":
|
|
deprecated([])
|
|
else:
|
|
deprecated.__getattr__(dir(deprecated)[-1])
|
|
|
|
|
|
def test_datetime():
|
|
from datetime import datetime
|
|
import warnings
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", FutureWarning)
|
|
assert datetime(2015, 1, 2, 0, 0) == pd.datetime(2015, 1, 2, 0, 0)
|
|
|
|
assert isinstance(pd.datetime(2015, 1, 2, 0, 0), pd.datetime)
|
|
|
|
|
|
def test_sparsearray():
|
|
import warnings
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", FutureWarning)
|
|
assert isinstance(pd.array([1, 2, 3], dtype="Sparse"), pd.SparseArray)
|
|
|
|
|
|
def test_np():
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", FutureWarning)
|
|
assert (pd.np.arange(0, 10) == np.arange(0, 10)).all()
|
|
|
|
|
|
class TestApi(Base):
|
|
allowed = ["types", "extensions", "indexers"]
|
|
|
|
def test_api(self):
|
|
self.check(api, self.allowed)
|
|
|
|
|
|
class TestTesting(Base):
|
|
funcs = [
|
|
"assert_frame_equal",
|
|
"assert_series_equal",
|
|
"assert_index_equal",
|
|
"assert_extension_array_equal",
|
|
]
|
|
|
|
def test_testing(self):
|
|
from pandas import testing
|
|
|
|
self.check(testing, self.funcs)
|
|
|
|
def test_util_testing_deprecated(self):
|
|
# avoid cache state affecting the test
|
|
sys.modules.pop("pandas.util.testing", None)
|
|
|
|
with tm.assert_produces_warning(FutureWarning) as m:
|
|
import pandas.util.testing # noqa: F401
|
|
|
|
assert "pandas.util.testing is deprecated" in str(m[0].message)
|
|
assert "pandas.testing instead" in str(m[0].message)
|
|
|
|
def test_util_testing_deprecated_direct(self):
|
|
# avoid cache state affecting the test
|
|
sys.modules.pop("pandas.util.testing", None)
|
|
with tm.assert_produces_warning(FutureWarning) as m:
|
|
from pandas.util.testing import assert_series_equal # noqa: F401
|
|
|
|
assert "pandas.util.testing is deprecated" in str(m[0].message)
|
|
assert "pandas.testing instead" in str(m[0].message)
|
|
|
|
def test_util_in_top_level(self):
|
|
# in a subprocess to avoid import caching issues
|
|
out = subprocess.check_output(
|
|
[
|
|
sys.executable,
|
|
"-c",
|
|
"import pandas; pandas.util.testing.assert_series_equal",
|
|
],
|
|
stderr=subprocess.STDOUT,
|
|
).decode()
|
|
assert "pandas.util.testing is deprecated" in out
|
|
|
|
with pytest.raises(AttributeError, match="foo"):
|
|
pd.util.foo
|
|
|