Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
58 lines
1.8 KiB
58 lines
1.8 KiB
import numpy as np
|
|
import numpy.matlib
|
|
from numpy.testing import assert_array_equal, assert_
|
|
|
|
def test_empty():
|
|
x = numpy.matlib.empty((2,))
|
|
assert_(isinstance(x, np.matrix))
|
|
assert_(x.shape, (1, 2))
|
|
|
|
def test_ones():
|
|
assert_array_equal(numpy.matlib.ones((2, 3)),
|
|
np.matrix([[ 1., 1., 1.],
|
|
[ 1., 1., 1.]]))
|
|
|
|
assert_array_equal(numpy.matlib.ones(2), np.matrix([[ 1., 1.]]))
|
|
|
|
def test_zeros():
|
|
assert_array_equal(numpy.matlib.zeros((2, 3)),
|
|
np.matrix([[ 0., 0., 0.],
|
|
[ 0., 0., 0.]]))
|
|
|
|
assert_array_equal(numpy.matlib.zeros(2), np.matrix([[ 0., 0.]]))
|
|
|
|
def test_identity():
|
|
x = numpy.matlib.identity(2, dtype=int)
|
|
assert_array_equal(x, np.matrix([[1, 0], [0, 1]]))
|
|
|
|
def test_eye():
|
|
xc = numpy.matlib.eye(3, k=1, dtype=int)
|
|
assert_array_equal(xc, np.matrix([[ 0, 1, 0],
|
|
[ 0, 0, 1],
|
|
[ 0, 0, 0]]))
|
|
assert xc.flags.c_contiguous
|
|
assert not xc.flags.f_contiguous
|
|
|
|
xf = numpy.matlib.eye(3, 4, dtype=int, order='F')
|
|
assert_array_equal(xf, np.matrix([[ 1, 0, 0, 0],
|
|
[ 0, 1, 0, 0],
|
|
[ 0, 0, 1, 0]]))
|
|
assert not xf.flags.c_contiguous
|
|
assert xf.flags.f_contiguous
|
|
|
|
def test_rand():
|
|
x = numpy.matlib.rand(3)
|
|
# check matrix type, array would have shape (3,)
|
|
assert_(x.ndim == 2)
|
|
|
|
def test_randn():
|
|
x = np.matlib.randn(3)
|
|
# check matrix type, array would have shape (3,)
|
|
assert_(x.ndim == 2)
|
|
|
|
def test_repmat():
|
|
a1 = np.arange(4)
|
|
x = numpy.matlib.repmat(a1, 2, 2)
|
|
y = np.array([[0, 1, 2, 3, 0, 1, 2, 3],
|
|
[0, 1, 2, 3, 0, 1, 2, 3]])
|
|
assert_array_equal(x, y)
|
|
|