Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
6.1 KiB
191 lines
6.1 KiB
"""Functions for computing and verifying regular graphs."""
|
|
import networkx as nx
|
|
from networkx.utils import not_implemented_for
|
|
|
|
__all__ = ["is_regular", "is_k_regular", "k_factor"]
|
|
|
|
|
|
def is_regular(G):
|
|
"""Determines whether the graph ``G`` is a regular graph.
|
|
|
|
A regular graph is a graph where each vertex has the same degree. A
|
|
regular digraph is a graph where the indegree and outdegree of each
|
|
vertex are equal.
|
|
|
|
Parameters
|
|
----------
|
|
G : NetworkX graph
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
Whether the given graph or digraph is regular.
|
|
|
|
"""
|
|
n1 = nx.utils.arbitrary_element(G)
|
|
if not G.is_directed():
|
|
d1 = G.degree(n1)
|
|
return all(d1 == d for _, d in G.degree)
|
|
else:
|
|
d_in = G.in_degree(n1)
|
|
in_regular = all(d_in == d for _, d in G.in_degree)
|
|
d_out = G.out_degree(n1)
|
|
out_regular = all(d_out == d for _, d in G.out_degree)
|
|
return in_regular and out_regular
|
|
|
|
|
|
@not_implemented_for("directed")
|
|
def is_k_regular(G, k):
|
|
"""Determines whether the graph ``G`` is a k-regular graph.
|
|
|
|
A k-regular graph is a graph where each vertex has degree k.
|
|
|
|
Parameters
|
|
----------
|
|
G : NetworkX graph
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
Whether the given graph is k-regular.
|
|
|
|
"""
|
|
return all(d == k for n, d in G.degree)
|
|
|
|
|
|
@not_implemented_for("directed")
|
|
@not_implemented_for("multigraph")
|
|
def k_factor(G, k, matching_weight="weight"):
|
|
"""Compute a k-factor of G
|
|
|
|
A k-factor of a graph is a spanning k-regular subgraph.
|
|
A spanning k-regular subgraph of G is a subgraph that contains
|
|
each vertex of G and a subset of the edges of G such that each
|
|
vertex has degree k.
|
|
|
|
Parameters
|
|
----------
|
|
G : NetworkX graph
|
|
Undirected graph
|
|
|
|
weight: string, optional (default='weight')
|
|
Edge data key corresponding to the edge weight.
|
|
Used for finding the max-weighted perfect matching.
|
|
If key not found, uses 1 as weight.
|
|
|
|
Returns
|
|
-------
|
|
G2 : NetworkX graph
|
|
A k-factor of G
|
|
|
|
References
|
|
----------
|
|
.. [1] "An algorithm for computing simple k-factors.",
|
|
Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
|
|
Information processing letters, 2009.
|
|
"""
|
|
|
|
from networkx.algorithms.matching import max_weight_matching
|
|
from networkx.algorithms.matching import is_perfect_matching
|
|
|
|
class LargeKGadget:
|
|
def __init__(self, k, degree, node, g):
|
|
self.original = node
|
|
self.g = g
|
|
self.k = k
|
|
self.degree = degree
|
|
|
|
self.outer_vertices = [(node, x) for x in range(degree)]
|
|
self.core_vertices = [(node, x + degree) for x in range(degree - k)]
|
|
|
|
def replace_node(self):
|
|
adj_view = self.g[self.original]
|
|
neighbors = list(adj_view.keys())
|
|
edge_attrs = list(adj_view.values())
|
|
for (outer, neighbor, edge_attrs) in zip(
|
|
self.outer_vertices, neighbors, edge_attrs
|
|
):
|
|
self.g.add_edge(outer, neighbor, **edge_attrs)
|
|
for core in self.core_vertices:
|
|
for outer in self.outer_vertices:
|
|
self.g.add_edge(core, outer)
|
|
self.g.remove_node(self.original)
|
|
|
|
def restore_node(self):
|
|
self.g.add_node(self.original)
|
|
for outer in self.outer_vertices:
|
|
adj_view = self.g[outer]
|
|
for neighbor, edge_attrs in list(adj_view.items()):
|
|
if neighbor not in self.core_vertices:
|
|
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
|
break
|
|
g.remove_nodes_from(self.outer_vertices)
|
|
g.remove_nodes_from(self.core_vertices)
|
|
|
|
class SmallKGadget:
|
|
def __init__(self, k, degree, node, g):
|
|
self.original = node
|
|
self.k = k
|
|
self.degree = degree
|
|
self.g = g
|
|
|
|
self.outer_vertices = [(node, x) for x in range(degree)]
|
|
self.inner_vertices = [(node, x + degree) for x in range(degree)]
|
|
self.core_vertices = [(node, x + 2 * degree) for x in range(k)]
|
|
|
|
def replace_node(self):
|
|
adj_view = self.g[self.original]
|
|
for (outer, inner, (neighbor, edge_attrs)) in zip(
|
|
self.outer_vertices, self.inner_vertices, list(adj_view.items())
|
|
):
|
|
self.g.add_edge(outer, inner)
|
|
self.g.add_edge(outer, neighbor, **edge_attrs)
|
|
for core in self.core_vertices:
|
|
for inner in self.inner_vertices:
|
|
self.g.add_edge(core, inner)
|
|
self.g.remove_node(self.original)
|
|
|
|
def restore_node(self):
|
|
self.g.add_node(self.original)
|
|
for outer in self.outer_vertices:
|
|
adj_view = self.g[outer]
|
|
for neighbor, edge_attrs in adj_view.items():
|
|
if neighbor not in self.core_vertices:
|
|
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
|
break
|
|
self.g.remove_nodes_from(self.outer_vertices)
|
|
self.g.remove_nodes_from(self.inner_vertices)
|
|
self.g.remove_nodes_from(self.core_vertices)
|
|
|
|
# Step 1
|
|
if any(d < k for _, d in G.degree):
|
|
raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
|
|
g = G.copy()
|
|
|
|
# Step 2
|
|
gadgets = []
|
|
for node, degree in list(g.degree):
|
|
if k < degree / 2.0:
|
|
gadget = SmallKGadget(k, degree, node, g)
|
|
else:
|
|
gadget = LargeKGadget(k, degree, node, g)
|
|
gadget.replace_node()
|
|
gadgets.append(gadget)
|
|
|
|
# Step 3
|
|
matching = max_weight_matching(g, maxcardinality=True, weight=matching_weight)
|
|
|
|
# Step 4
|
|
if not is_perfect_matching(g, matching):
|
|
raise nx.NetworkXUnfeasible(
|
|
"Cannot find k-factor because no perfect matching exists"
|
|
)
|
|
|
|
for edge in g.edges():
|
|
if edge not in matching and (edge[1], edge[0]) not in matching:
|
|
g.remove_edge(edge[0], edge[1])
|
|
|
|
for gadget in gadgets:
|
|
gadget.restore_node()
|
|
|
|
return g
|
|
|