Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
27 lines
851 B
27 lines
851 B
import set_of_cims as socim
|
|
import numpy as np
|
|
|
|
|
|
class AmalgamatedCims:
|
|
|
|
def __init__(self, states_number,list_of_keys, list_of_vars_order):
|
|
self.sets_of_cims = {}
|
|
self.init_cims_structure(list_of_keys, states_number, list_of_vars_order)
|
|
self.states_per_variable = states_number
|
|
|
|
def init_cims_structure(self, keys, nodes_val, list_of_vars_order):
|
|
print(keys)
|
|
print(list_of_vars_order)
|
|
for indx, key in enumerate(keys):
|
|
self.sets_of_cims[key] = socim.SetOfCims(key, list_of_vars_order[indx], nodes_val)
|
|
|
|
|
|
|
|
def get_set_of_cims(self, node_id):
|
|
return self.sets_of_cims[node_id]
|
|
|
|
def get_vars_order(self, node):
|
|
return self.actual_cims[node][1]
|
|
|
|
def update_state_transition_for_matrix(self, node, dict_of_indxs, element_indx):
|
|
self.actual_cims[node]
|
|
|