1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/test_structure_estimator.py

98 lines
3.9 KiB

import sys
sys.path.append("/Users/Zalum/Desktop/Tesi/CTBN_Project/main_package/classes/")
import unittest
import numpy as np
import networkx as nx
import glob
import os
import math
from line_profiler import LineProfiler
import psutil
import json_importer as ji
import sample_path as sp
import structure_estimator as se
import cache as ch
class TestStructureEstimator(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories()
cls.s1.build_structure()
def test_init(self):
exp_alfa = 0.1
chi_alfa = 0.1
se1 = se.StructureEstimator(self.s1, exp_alfa, chi_alfa)
self.assertEqual(self.s1, se1.sample_path)
self.assertTrue(np.array_equal(se1.nodes, np.array(self.s1.structure.nodes_labels)))
self.assertTrue(np.array_equal(se1.nodes_indxs, self.s1.structure.nodes_indexes))
self.assertTrue(np.array_equal(se1.nodes_vals, self.s1.structure.nodes_values))
self.assertEqual(se1.exp_test_sign, exp_alfa)
self.assertEqual(se1.chi_test_alfa, chi_alfa)
self.assertIsInstance(se1.complete_graph, nx.DiGraph)
self.assertIsInstance(se1.cache, ch.Cache)
def test_build_complete_graph(self):
exp_alfa = 0.1
chi_alfa = 0.1
nodes_numb = len(self.s1.structure.nodes_labels)
se1 = se.StructureEstimator(self.s1, exp_alfa, chi_alfa)
cg = se1.build_complete_graph(self.s1.structure.nodes_labels)
self.assertEqual(len(cg.edges), nodes_numb*(nodes_numb - 1))
for node in self.s1.structure.nodes_labels:
no_self_loops = self.s1.structure.nodes_labels[:]
no_self_loops.remove(node)
for n2 in no_self_loops:
self.assertIn((node, n2), cg.edges)
def test_generate_possible_sub_sets_of_size(self):
exp_alfa = 0.1
chi_alfa = 0.1
nodes_numb = len(self.s1.structure.nodes_labels)
se1 = se.StructureEstimator(self.s1, exp_alfa, chi_alfa)
for node in self.s1.structure.nodes_labels:
for b in range(nodes_numb):
sets = se1.generate_possible_sub_sets_of_size(self.s1.structure.nodes_labels, b, node)
sets2 = se1.generate_possible_sub_sets_of_size(self.s1.structure.nodes_labels, b, node)
self.assertEqual(len(list(sets)), math.floor(math.factorial(nodes_numb - 1) /
(math.factorial(b)*math.factorial(nodes_numb -1 - b))))
for sset in sets2:
self.assertFalse(node in sset)
def test_time(self):
se1 = se.StructureEstimator(self.s1, 0.1, 0.1)
lp = LineProfiler()
lp.add_function(se1.complete_test)
lp.add_function(se1.one_iteration_of_CTPC_algorithm)
lp.add_function(se1.independence_test)
lp_wrapper = lp(se1.ctpc_algorithm)
lp_wrapper()
lp.print_stats()
print(se1.complete_graph.edges)
print(self.s1.structure.edges)
for ed in self.s1.structure.edges:
self.assertIn(tuple(ed), se1.complete_graph.edges)
tuples_edges = [tuple(rec) for rec in self.s1.structure.edges]
spurious_edges = []
for ed in se1.complete_graph.edges:
if not(ed in tuples_edges):
spurious_edges.append(ed)
print("Spurious Edges:",spurious_edges)
se1.save_results()
def test_memory(self):
se1 = se.StructureEstimator(self.s1, 0.1, 0.1)
se1.ctpc_algorithm()
current_process = psutil.Process(os.getpid())
mem = current_process.memory_info().rss
print("Average Memory Usage in MB:", mem / 10**6)
if __name__ == '__main__':
unittest.main()