1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/optimizers/hill_climbing_search.py

114 lines
3.7 KiB

import sys
sys.path.append('../')
import itertools
import json
import typing
import networkx as nx
import numpy as np
from networkx.readwrite import json_graph
from random import choice
from abc import ABC
from optimizers.optimizer import Optimizer
from estimators import structure_estimator as se
import structure_graph.network_graph as ng
class HillClimbing(Optimizer):
"""
Optimizer class that implement Hill Climbing Search
"""
def __init__(self,
node_id:str,
structure_estimator: se.StructureEstimator,
max_parents:int = None,
iterations_number:int= 40,
patience:int = None
):
"""
Compute Optimization process for a structure_estimator
Parameters:
node_id: the node label
structure_estimator: a structure estimator object with the information about the net
max_parents: maximum number of parents for each variable. If None, disabled
iterations_number: maximum number of optimization algorithm's iteration
patience: number of iteration without any improvement before to stop the search.If None, disabled
"""
super().__init__(node_id, structure_estimator)
self.max_parents = max_parents
self.iterations_number = iterations_number
self.patience = patience
def optimize_structure(self) -> typing.List:
"""
Compute Optimization process for a structure_estimator
Parameters:
Returns:
the estimated structure for the node
"""
#'Create the graph for the single node'
graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure)
other_nodes = [node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id]
actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
patince_count = 0
for i in range(self.iterations_number):
'choose a new random edge'
current_new_parent = choice(other_nodes)
current_edge = (current_new_parent,self.node_id)
added = False
parent_removed = None
if graph.has_edge(current_edge):
graph.remove_edges([current_edge])
else:
'check the max_parents constraint'
if self.max_parents is not None:
parents_list = graph.get_parents_by_id(self.node_id)
if len(parents_list) >= self.max_parents :
parent_removed = (choice(parents_list), self.node_id)
graph.remove_edges([parent_removed])
graph.add_edges([current_edge])
added = True
#print('**************************')
current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
if current_score > actual_best_score:
'update current best score'
actual_best_score = current_score
patince_count = 0
else:
'undo the last update'
if added:
graph.remove_edges([current_edge])
'If a parent was removed, add it again to the graph'
if parent_removed is not None:
graph.add_edges([parent_removed])
else:
graph.add_edges([current_edge])
'update patience count'
patince_count += 1
if self.patience is not None and patince_count > self.patience:
break
print(f"finito variabile: {self.node_id}")
return graph.edges