Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.8 KiB
71 lines
2.8 KiB
import numpy as np
|
|
import conditional_intensity_matrix as cim
|
|
|
|
|
|
class SetOfCims:
|
|
"""
|
|
Rappresenta la struttura che aggrega tutte le CIM per la variabile di label node_id
|
|
|
|
:node_id: la label della varibile a cui fanno riferimento le CIM
|
|
:ordered_parent_set: il set dei parent della variabile node_id ordinata secondo la property indx
|
|
:value: il numero massimo di stati assumibili dalla variabile
|
|
:actual_cims: le CIM della varibile
|
|
"""
|
|
|
|
def __init__(self, node_id, parents_states_number, node_states_number):
|
|
self.node_id = node_id
|
|
self.parents_states_number = parents_states_number
|
|
self.node_states_number = node_states_number
|
|
self.actual_cims = []
|
|
self.state_residence_times = None
|
|
self.transition_matrices = None
|
|
self.build_actual_cims_structure()
|
|
|
|
def build_actual_cims_structure(self):
|
|
if not self.parents_states_number:
|
|
self.state_residence_times = np.zeros((1, self.node_states_number), dtype=np.float)
|
|
self.transition_matrices = np.zeros((1,self.node_states_number, self.node_states_number), dtype=np.int)
|
|
else:
|
|
self.state_residence_times = \
|
|
np.zeros((np.prod(self.parents_states_number), self.node_states_number), dtype=np.float)
|
|
self.transition_matrices = np.zeros([np.prod(self.parents_states_number), self.node_states_number,
|
|
self.node_states_number], dtype=np.int)
|
|
|
|
|
|
def get_cims_number(self):
|
|
return len(self.actual_cims)
|
|
|
|
def indexes_converter(self, indexes): # Si aspetta array del tipo [2,2] dove
|
|
assert len(indexes) == len(self.parents_states_number)
|
|
vector_index = 0
|
|
if not indexes:
|
|
return vector_index
|
|
else:
|
|
for indx, value in enumerate(indexes):
|
|
vector_index = vector_index*self.parents_states_number[indx] + indexes[indx]
|
|
return vector_index
|
|
|
|
def build_cims(self, state_res_times, transition_matrices):
|
|
for state_res_time_vector, transition_matrix in zip(state_res_times, transition_matrices):
|
|
#print(state_res_time_vector, transition_matrix)
|
|
cim_to_add = cim.ConditionalIntensityMatrix(state_res_time_vector, transition_matrix)
|
|
cim_to_add.compute_cim_coefficients()
|
|
#print(cim_to_add)
|
|
self.actual_cims.append(cim_to_add)
|
|
self.transition_matrices = None
|
|
self.state_residence_times = None
|
|
|
|
def get_cims(self):
|
|
return self.actual_cims
|
|
|
|
def get_cim(self, index):
|
|
flat_index = self.indexes_converter(index)
|
|
return self.actual_cims[flat_index]
|
|
|
|
|
|
"""sofc = SetOfCims('Z', [3, 3], 3)
|
|
sofc.build_actual_cims_structure()
|
|
print(sofc.actual_cims)
|
|
print(sofc.actual_cims[0,0])
|
|
print(sofc.actual_cims[1,2])
|
|
#print(sofc.indexes_converter([]))"""
|
|
|