1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/network_graph.py

239 lines
11 KiB

import networkx as nx
import numpy as np
class NetworkGraph():
"""
Rappresenta il grafo che contiene i nodi e gli archi presenti nell'oggetto Structure graph_struct.
Ogni nodo contine la label node_id, al nodo è anche associato un id numerico progressivo indx che rappresenta la posizione
dei sui valori nella colonna indx della traj
:graph_struct: l'oggetto Structure da cui estrarre i dati per costruire il grafo graph
:graph: il grafo
"""
def __init__(self, graph_struct):
self.graph_struct = graph_struct
self.graph = nx.DiGraph()
self._nodes_indexes = self.graph_struct.list_of_nodes_indexes()
self._nodes_labels = self.graph_struct.list_of_nodes_labels()
self.aggregated_info_about_nodes_parents = None
self._fancy_indexing = None
self._time_scalar_indexing_structure = None
self._transition_scalar_indexing_structure = None
self._time_filtering = None
self._transition_filtering = None
def init_graph(self):
self.add_nodes(self.graph_struct.list_of_nodes_labels())
self.add_edges(self.graph_struct.list_of_edges())
self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes()
self._fancy_indexing = self.build_fancy_indexing_structure(0)
self.build_time_scalar_indexing_structure()
self.build_time_columns_filtering_structure()
self.build_transition_scalar_indexing_structure()
self.build_transition_columns_filtering_structure()
def add_nodes(self, list_of_nodes):
#self.graph.add_nodes_from(list_of_nodes)
set_node_attr = nx.set_node_attributes
nodes_indxs = self.graph_struct.list_of_nodes_indexes()
nodes_vals = self.graph_struct.nodes_values()
for id, node_indx, node_val in zip(list_of_nodes, nodes_indxs, nodes_vals):
self.graph.add_node(id, indx=node_indx, val=node_val)
#set_node_attr(self.graph, {id:node_indx}, 'indx')
def add_edges(self, list_of_edges):
self.graph.add_edges_from(list_of_edges)
def get_ordered_by_indx_set_of_parents(self, node):
parents = self.get_parents_by_id(node)
nodes = self.get_nodes()
sorted_parents = [x for _, x in sorted(zip(nodes, parents))]
#p_indxes= []
#p_values = []
get_node_indx = self.get_node_indx
get_states_number_by_indx = self.get_states_number_by_indx
p_indxes = [get_node_indx(node) for node in sorted_parents]
p_values = [get_states_number_by_indx(indx) for indx in p_indxes]
"""for n in parents:
#indx = self.graph_struct.get_node_indx(n)
#print(indx)
#ordered_set[n] = indx
node_indx = self.get_node_indx(n)
p_indxes.append(node_indx)
#p_values.append(self.graph_struct.get_states_number(n))
p_values.append(self.get_states_number_by_indx(node_indx))"""
#ordered_set = (sorted_parents, p_indxes, p_values)
return (sorted_parents, p_indxes, p_values)
def get_ord_set_of_par_of_all_nodes(self):
#result = []
#for node in self._nodes_labels:
#result.append(self.get_ordered_by_indx_set_of_parents(node))
get_ordered_by_indx_set_of_parents = self.get_ordered_by_indx_set_of_parents
result = [get_ordered_by_indx_set_of_parents(node) for node in self._nodes_labels]
return result
"""def get_ordered_by_indx_parents_values(self, node):
parents_values = []
parents = self.get_ordered_by_indx_set_of_parents(node)
for n in parents:
parents_values.append(self.graph_struct.get_states_number(n))
return parents_values"""
def get_ordered_by_indx_parents_values_for_all_nodes(self):
"""result = []
for node in self._nodes_labels:
result.append(self.get_ordered_by_indx_parents_values(node))
return result"""
pars_values = [i[2] for i in self.aggregated_info_about_nodes_parents]
return pars_values
def get_states_number_of_all_nodes_sorted(self):
#states_number_list = []
#for node in self._nodes_labels:
#states_number_list.append(self.get_states_number(node))
get_states_number = self.get_states_number
states_number_list = [get_states_number(node) for node in self._nodes_labels]
return states_number_list
def build_fancy_indexing_structure(self, start_indx):
"""list_of_parents_list = self.get_ord_set_of_par_of_all_nodes()
#print(list_of_parents_list)
index_structure = []
for i, list_of_parents in enumerate(list_of_parents_list):
indexes_for_a_node = []
for j, node in enumerate(list_of_parents):
indexes_for_a_node.append(self.get_node_indx(node) + start_indx)
index_structure.append(np.array(indexes_for_a_node, dtype=np.int))
#print(index_structure)
return index_structure"""
if start_indx > 0:
pass
else:
fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents]
return fancy_indx
def build_time_scalar_indexing_structure_for_a_node(self, node_indx, parents_indxs):
#print(node_indx)
#print("Parents_id", parents_indxs)
#T_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)])
get_states_number_by_indx = self.graph_struct.get_states_number_by_indx
T_vector = np.array([get_states_number_by_indx(node_indx)])
#print(T_vector)
T_vector = np.append(T_vector, [get_states_number_by_indx(x) for x in parents_indxs])
#print(T_vector)
T_vector = T_vector.cumprod().astype(np.int)
return T_vector
#print(T_vector)
def build_time_scalar_indexing_structure(self):
#parents_indexes_list = self._fancy_indexing
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
self._time_scalar_indexing_structure.append(
self.build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs))"""
build_time_scalar_indexing_structure_for_a_node = self.build_time_scalar_indexing_structure_for_a_node
self._time_scalar_indexing_structure = [build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs)
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(),
self._fancy_indexing)]
def build_transition_scalar_indexing_structure_for_a_node(self, node_indx, parents_indxs):
#M_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1],
#self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)])
node_states_number = self.get_states_number_by_indx(node_indx)
get_states_number_by_indx = self.graph_struct.get_states_number_by_indx
M_vector = np.array([node_states_number,
node_states_number])
M_vector = np.append(M_vector, [get_states_number_by_indx(x) for x in parents_indxs])
M_vector = M_vector.cumprod().astype(np.int)
return M_vector
def build_transition_scalar_indexing_structure(self):
#parents_indexes_list = self._fancy_indexing
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
self._transition_scalar_indexing_structure.append(
self.build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs))"""
build_transition_scalar_indexing_structure_for_a_node = self.build_transition_scalar_indexing_structure_for_a_node
self._transition_scalar_indexing_structure = \
[build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs)
for node_indx, p_indxs in
zip(self.graph_struct.list_of_nodes_indexes(),
self._fancy_indexing) ]
def build_time_columns_filtering_structure(self):
#parents_indexes_list = self._fancy_indexing
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
self._time_filtering.append(np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int))"""
self._time_filtering = [np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int)
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing)]
def build_transition_columns_filtering_structure(self):
#parents_indexes_list = self._fancy_indexing
nodes_number = self.graph_struct.total_variables_number
"""for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(), self._fancy_indexing):
self._transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int))"""
self._transition_filtering = [np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)
for node_indx, p_indxs in zip(self.graph_struct.list_of_nodes_indexes(),
self._fancy_indexing)]
def get_nodes(self):
return list(self.graph.nodes)
def get_edges(self):
return list(self.graph.edges)
def get_nodes_sorted_by_indx(self):
return self.graph_struct.list_of_nodes_labels()
def get_parents_by_id(self, node_id):
return list(self.graph.predecessors(node_id))
def get_states_number(self, node_id):
#return self.graph_struct.get_states_number(node_id)
return self.graph.nodes[node_id]['val']
def get_states_number_by_indx(self, node_indx):
return self.graph_struct.get_states_number_by_indx(node_indx)
def get_node_by_index(self, node_indx):
return self.graph_struct.get_node_id(node_indx)
def get_node_indx(self, node_id):
return nx.get_node_attributes(self.graph, 'indx')[node_id]
#return self.graph_struct.get_node_indx(node_id)
@property
def time_scalar_indexing_strucure(self):
return self._time_scalar_indexing_structure
@property
def time_filtering(self):
return self._time_filtering
@property
def transition_scalar_indexing_structure(self):
return self._transition_scalar_indexing_structure
@property
def transition_filtering(self):
return self._transition_filtering
"""def remove_node(self, node_id):
node_indx = self.get_node_indx(node_id)
self.graph_struct.remove_node(node_id)
self.graph.remove_node(node_id)
del self._fancy_indexing[node_indx]
del self._time_filtering[node_indx]
del self._nodes_labels[node_indx]
del self._transition_scalar_indexing_structure[node_indx]
del self._transition_filtering[node_indx]
del self._time_scalar_indexing_structure[node_indx]
del self.aggregated_info_about_nodes_parents[node_indx]
del self._nodes_indexes[node_indx]"""