Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
45 lines
1.4 KiB
45 lines
1.4 KiB
|
|
import typing
|
|
|
|
import numpy as np
|
|
|
|
|
|
class Trajectory(object):
|
|
""" Abstracts the infos about a complete set of trajectories, represented as a numpy array of doubles
|
|
(the time deltas) and a numpy matrix of ints (the changes of states).
|
|
|
|
:param list_of_columns: the list containing the times array and values matrix
|
|
:type list_of_columns: List
|
|
:param original_cols_number: total number of cols in the data
|
|
:type original_cols_number: int
|
|
:_actual_trajectory: the trajectory containing also the duplicated/shifted values
|
|
:_times: the array containing the time deltas
|
|
"""
|
|
|
|
def __init__(self, list_of_columns: typing.List, original_cols_number: int):
|
|
"""Constructor Method
|
|
"""
|
|
self._times = list_of_columns[0]
|
|
self._actual_trajectory = list_of_columns[1]
|
|
self._original_cols_number = original_cols_number
|
|
|
|
@property
|
|
def trajectory(self) -> np.ndarray:
|
|
return self._actual_trajectory[:, :self._original_cols_number]
|
|
|
|
@property
|
|
def complete_trajectory(self) -> np.ndarray:
|
|
return self._actual_trajectory
|
|
|
|
@property
|
|
def times(self):
|
|
return self._times
|
|
|
|
def size(self):
|
|
return self._actual_trajectory.shape[0]
|
|
|
|
def __repr__(self):
|
|
return "Complete Trajectory Rows: " + str(self.size()) + "\n" + self.complete_trajectory.__repr__() + \
|
|
"\nTimes Rows:" + str(self.times.size) + "\n" + self.times.__repr__()
|
|
|
|
|
|
|