1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/json_importer.py

73 lines
2.4 KiB

import os
import glob
import pandas as pd
import json
import numpy as np
from abstract_importer import AbstractImporter
class JsonImporter(AbstractImporter):
def __init__(self, files_path):
self.df_samples_list = []
self.df_structure = pd.DataFrame()
self.df_variables = pd.DataFrame()
super(JsonImporter, self).__init__(files_path)
def import_data(self):
raw_data = self.read_json_file()
self.import_trajectories(raw_data)
self.import_structure(raw_data)
self.import_variables(raw_data)
def import_trajectories(self, raw_data):
self.normalize_trajectories(raw_data, 0, 'samples')
def import_structure(self, raw_data):
self.df_structure = self.one_level_normalizing(raw_data, 0, 'dyn.str')
def import_variables(self, raw_data):
self.df_variables = self.one_level_normalizing(raw_data, 0, 'variables')
def read_json_file(self):
try:
read_files = glob.glob(os.path.join(self.files_path, "*.json"))
for file_name in read_files:
with open(file_name) as f:
data = json.load(f)
return data
except ValueError as err:
print(err.args)
def one_level_normalizing(self, raw_data, indx, variables_key):
return pd.json_normalize(raw_data[indx][variables_key])
def normalize_trajectories(self, raw_data, indx, trajectories_key):
for sample_indx, sample in enumerate(raw_data[indx][trajectories_key]):
self.df_samples_list.append(pd.json_normalize(raw_data[indx][trajectories_key][sample_indx]))
def build_list_of_samples_array(self, data_frame):
columns_list = []
for column in data_frame:
columns_list.append(data_frame[column].to_numpy())
return columns_list
def clear_data_frames(self):
"""
Rimuove tutti i valori contenuti nei data_frames presenti in df_list
Parameters:
void
Returns:
void
"""
for indx in range(len(self.df_samples_list)):
#data_frame = data_frame.iloc[0:0]
self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0]
"""ij = JsonImporter("../data")
ij.import_data()
#print(ij.df_samples_list[7])
print(ij.df_structure)
print(ij.df_variables)
print((ij.build_list_of_samples_array(0)[1].size))"""