1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/parameters_estimator.py

100 lines
3.8 KiB

import os
import time as tm
import network_graph as ng
import sample_path as sp
import amalgamated_cims as acims
class ParametersEstimator:
def __init__(self, sample_path, net_graph):
self.sample_path = sample_path
self.net_graph = net_graph
self.amalgamated_cims_struct = None
def init_amalgamated_cims_struct(self):
self.amalgamated_cims_struct = acims.AmalgamatedCims(self.net_graph.get_states_number(),
self.net_graph.get_nodes(),
self.net_graph.get_ord_set_of_par_of_all_nodes())
def parameters_estimation(self):
print("Starting computing")
t0 = tm.time()
for indx, trajectory in enumerate(self.sample_path.trajectories):
self.parameters_estimation_single_trajectory(trajectory.get_trajectory())
#print("Finished Trajectory number", indx)
t1 = tm.time() - t0
print("Elapsed Time ", t1)
def parameters_estimation_single_trajectory(self, trajectory):
#print(type(trajectory[0][0]))
for indx, row in enumerate(trajectory):
if trajectory[indx][1] == -1:
break
if trajectory[indx + 1][1] != -1:
transition = self.find_transition(trajectory[indx], trajectory[indx + 1])
which_node = self.net_graph.get_node_by_index(transition[0])
# print(which_node)
which_matrix = self.which_matrix_to_update(row, which_node)
which_element = transition[1]
self.amalgamated_cims_struct.update_state_transition_for_matrix(which_node, which_matrix, which_element)
#changed_node = which_node
time = self.compute_time_delta(trajectory[indx], trajectory[indx + 1])
for node in self.net_graph.get_nodes():
#if node != changed_node:
# print(node)
which_node = node
which_matrix = self.which_matrix_to_update(row, which_node)
which_element = row[self.net_graph.get_node_indx(node) + 1]
# print("State res time element " + str(which_element) + node)
# print("State res time matrix indx" + str(which_matrix))
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix, which_element, time)
def find_transition(self, current_row, next_row):
for indx in range(1, len(current_row)):
if current_row[indx] != next_row[indx]:
return [indx - 1, (current_row[indx], next_row[indx])]
def compute_time_delta(self, current_row, next_row):
return next_row[0] - current_row[0]
def which_matrix_to_update(self, current_row, node_id): # produce strutture {'X':1, 'Y':2} dove X e Y sono i parent di node_id
result = {}
parent_list = self.net_graph.get_parents_by_id(node_id)
for node in parent_list:
result[node] = current_row[self.net_graph.get_node_indx(node) + 1]
# print(result)
return result
# Simple Test #
os.getcwd()
os.chdir('..')
path = os.getcwd() + '/data'
s1 = sp.SamplePath(path)
s1.build_trajectories()
s1.build_structure()
g1 = ng.NetworkGraph(s1.structure)
g1.init_graph()
pe = ParametersEstimator(s1, g1)
pe.init_amalgamated_cims_struct()
print(pe.amalgamated_cims_struct.get_set_of_cims('X').get_cims_number())
print(pe.amalgamated_cims_struct.get_set_of_cims('Y').get_cims_number())
#pe.parameters_estimation_single_trajectory(pe.sample_path.trajectories[0].get_trajectory())
pe.parameters_estimation()
for matrix in pe.amalgamated_cims_struct.get_set_of_cims('Y').actual_cims:
print(matrix.state_residence_times)
print(matrix.state_transition_matrix)
matrix.compute_cim_coefficients()
print(matrix.cim)