Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
32 lines
1.3 KiB
32 lines
1.3 KiB
import set_of_cims as socim
|
|
import numpy as np
|
|
|
|
|
|
class AmalgamatedCims:
|
|
"""
|
|
Aggrega un insieme di oggetti SetOfCims indicizzandoli a partire dal node_id della variabile:
|
|
{X:SetofCimsX, Y:SetOfCimsY.......}
|
|
"""
|
|
# list_of_vars_orders contiene tutte le liste con i parent ordinati secondo il valore indx
|
|
def __init__(self, states_number, list_of_keys, list_of_vars_order):
|
|
self.sets_of_cims = {}
|
|
self.init_cims_structure(list_of_keys, states_number, list_of_vars_order)
|
|
self.states_per_variable = states_number
|
|
|
|
def init_cims_structure(self, keys, nodes_val, list_of_vars_order):
|
|
print(keys)
|
|
print(list_of_vars_order)
|
|
for indx, key in enumerate(keys):
|
|
self.sets_of_cims[key] = socim.SetOfCims(key, list_of_vars_order[indx], nodes_val)
|
|
|
|
def get_set_of_cims(self, node_id):
|
|
return self.sets_of_cims[node_id]
|
|
|
|
def get_vars_order(self, node):
|
|
return self.actual_cims[node][1]
|
|
|
|
def update_state_transition_for_matrix(self, node, dict_of_nodes_values, element_indx):
|
|
self.sets_of_cims[node].update_state_transition(dict_of_nodes_values, element_indx)
|
|
|
|
def update_state_residence_time_for_matrix(self, which_node, which_matrix, which_element, time):
|
|
self.sets_of_cims[which_node].update_state_residence_time(which_matrix, which_element, time)
|
|
|