Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
7.0 KiB
183 lines
7.0 KiB
|
|
import json
|
|
import typing
|
|
import pandas as pd
|
|
|
|
import abstract_importer as ai
|
|
|
|
|
|
class JsonImporter(ai.AbstractImporter):
|
|
"""
|
|
Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare the data in json ext.
|
|
with the following structure:
|
|
[0]
|
|
|_ dyn.cims
|
|
|_ dyn.str
|
|
|_ samples
|
|
|_ variabels
|
|
:file_path: the path of the file that contains tha data to be imported
|
|
:_samples_label: the reference key for the samples in the trajectories
|
|
:_structure_label: the reference key for the structure of the network data
|
|
:_variables_label: the reference key for the cardinalites of the nodes data
|
|
:_time_key: the key used to identify the timestamps in each trajectory
|
|
:_variables_key: the key used to identify the names of the variables in the net
|
|
:_df_samples_list: a Dataframe list in which every df contains a trajectory
|
|
"""
|
|
|
|
def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str,
|
|
variables_key: str, array_indx: int):
|
|
"""
|
|
Parameters:
|
|
:file_path: the path of the file that contains tha data to be imported
|
|
:_samples_label: the reference key for the samples in the trajectories
|
|
:_structure_label: the reference key for the structure of the network data
|
|
:_variables_label: the reference key for the cardinalites of the nodes data
|
|
:_time_key: the key used to identify the timestamps in each trajectory
|
|
:_variables_key: the key used to identify the names of the variables in the net
|
|
:_array_indx: the index of the outer json array from which import all the data
|
|
"""
|
|
self._samples_label = samples_label
|
|
self._structure_label = structure_label
|
|
self._variables_label = variables_label
|
|
self._time_key = time_key
|
|
self._variables_key = variables_key
|
|
self._df_samples_list = None
|
|
self._array_indx = array_indx
|
|
super(JsonImporter, self).__init__(file_path)
|
|
|
|
def import_data(self):
|
|
"""
|
|
Imports and prepares all data present needed for subsequent processing.
|
|
Parameters:
|
|
:void
|
|
Returns:
|
|
_void
|
|
"""
|
|
raw_data = self.read_json_file()
|
|
self._df_samples_list = self.import_trajectories(raw_data)
|
|
self._sorter = self.build_sorter(self._df_samples_list[0])
|
|
self.compute_row_delta_in_all_samples_frames(self._df_samples_list)
|
|
self.clear_data_frame_list()
|
|
self._df_structure = self.import_structure(raw_data)
|
|
self._df_variables = self.import_variables(raw_data)
|
|
|
|
def import_trajectories(self, raw_data: typing.List) -> typing.List:
|
|
"""
|
|
Imports the trajectories in the list of dicts raw_data.
|
|
Parameters:
|
|
:raw_data: List of Dicts
|
|
Returns:
|
|
:List of dataframes containing all the trajectories
|
|
"""
|
|
return self.normalize_trajectories(raw_data, self._array_indx, self._samples_label)
|
|
|
|
def import_structure(self, raw_data: typing.List) -> pd.DataFrame:
|
|
"""
|
|
Imports in a dataframe the data in the list raw_data at the key _structure_label
|
|
|
|
Parameters:
|
|
:raw_data: the data
|
|
Returns:
|
|
:Daframe containg the starting node a ending node of every arc of the network
|
|
"""
|
|
return self.one_level_normalizing(raw_data, self._array_indx, self._structure_label)
|
|
|
|
def import_variables(self, raw_data: typing.List) -> pd.DataFrame:
|
|
"""
|
|
Imports the data in raw_data at the key _variables_label.
|
|
Sorts the row of the dataframe df_variables using the list sorter.
|
|
|
|
Parameters:
|
|
:raw_data: the data
|
|
:sorter: the header of the dataset containing only variables symbolic labels
|
|
Returns:
|
|
:Datframe containg the variables simbolic labels and their cardinalities
|
|
"""
|
|
return self.one_level_normalizing(raw_data, self._array_indx, self._variables_label)
|
|
|
|
def read_json_file(self) -> typing.List:
|
|
"""
|
|
Reads the JSON file in the path self.filePath
|
|
|
|
Parameters:
|
|
:void
|
|
Returns:
|
|
:data: the contents of the json file
|
|
|
|
"""
|
|
with open(self._file_path) as f:
|
|
data = json.load(f)
|
|
return data
|
|
|
|
def one_level_normalizing(self, raw_data: typing.List, indx: int, key: str) -> pd.DataFrame:
|
|
"""
|
|
Extracts the one-level nested data in the list raw_data at the index indx at the key key
|
|
|
|
Parameters:
|
|
:raw_data: List of Dicts
|
|
:indx: The index of the array from which the data have to be extracted
|
|
:key: the key for the Dicts from which exctract data
|
|
Returns:
|
|
:a normalized dataframe:
|
|
|
|
"""
|
|
return pd.DataFrame(raw_data[indx][key])
|
|
|
|
def normalize_trajectories(self, raw_data: typing.List, indx: int, trajectories_key: str) -> typing.List:
|
|
"""
|
|
Extracts the traj in raw_data at the index index at the key trajectories key.
|
|
|
|
Parameters:
|
|
:raw_data: the data
|
|
:indx: the index of the array from which extract data
|
|
:trajectories_key: the key of the trajectories objects
|
|
Returns:
|
|
:A list of daframes containg the trajectories
|
|
"""
|
|
dataframe = pd.DataFrame
|
|
smps = raw_data[indx][trajectories_key]
|
|
df_samples_list = [dataframe(sample) for sample in smps]
|
|
return df_samples_list
|
|
|
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
|
|
"""
|
|
Implements the abstract method build_sorter for this dataset
|
|
"""
|
|
columns_header = list(sample_frame.columns.values)
|
|
columns_header.remove(self._time_key)
|
|
return columns_header
|
|
|
|
def clear_data_frame_list(self):
|
|
"""
|
|
Removes all values present in the dataframes in the list _df_samples_list
|
|
Parameters:
|
|
:void
|
|
Returns:
|
|
:void
|
|
"""
|
|
for indx in range(len(self._df_samples_list)):
|
|
self._df_samples_list[indx] = self._df_samples_list[indx].iloc[0:0]
|
|
|
|
def import_sampled_cims(self, raw_data: typing.List, indx: int, cims_key: str) -> typing.Dict:
|
|
"""
|
|
Imports the synthetic CIMS in the dataset in a dictionary, using variables labels
|
|
as keys for the set of CIMS of a particular node.
|
|
Parameters:
|
|
:raw_data: the data
|
|
:indx: the json array index
|
|
:cims_key: the key where the json object cims are placed
|
|
Returns:
|
|
:a dictionary containing the sampled CIMS for all the variables in the net
|
|
"""
|
|
cims_for_all_vars = {}
|
|
for var in raw_data[indx][cims_key]:
|
|
sampled_cims_list = []
|
|
cims_for_all_vars[var] = sampled_cims_list
|
|
for p_comb in raw_data[indx][cims_key][var]:
|
|
cims_for_all_vars[var].append(pd.DataFrame(raw_data[indx][cims_key][var][p_comb]).to_numpy())
|
|
return cims_for_all_vars
|
|
|
|
|
|
|
|
|
|
|
|
|